有效的探索仍然是强化学习中有挑战性的问题,特别是对于来自环境的外在奖励稀疏甚至完全忽视的任务。基于内在动机的重要进展显示了在简单环境中的有希望的结果,但通常会在具有多式联运和随机动力学的环境中陷入困境。在这项工作中,我们提出了一种基于条件变分推理的变分动力模型来模拟多模和随机性。通过在当前状态,动作和潜在变量的条件下产生下一个状态预测,我们考虑作为条件生成过程的环境状态动作转换,这提供了更好地了解动态并在勘探中引发更好的性能。我们派生了环境过渡的负面日志可能性的上限,并使用这样一个上限作为勘探的内在奖励,这使得代理通过自我监督的探索来学习技能,而无需观察外在奖励。我们在基于图像的仿真任务和真正的机器人操纵任务中评估所提出的方法。我们的方法优于若干基于最先进的环境模型的勘探方法。
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译
有效的探索对于具有稀疏奖励或高维状态行动空间的环境中的加固学习代理至关重要。基于国家访问的数量,好奇心和熵最大化的最新作品产生了固有的奖励信号,以激励代理人参观新颖的国家进行探索。但是,代理可能会因包含新颖但任务含量信息的传感器输入的扰动而分心,例如由于传感器噪声或背景变化。在这项工作中,我们通过对时间序列观察中的测试和压缩顺序预测信息进行建模和压缩顺序预测信息,介绍了为学习压缩和时间连贯表示的顺序信息瓶颈目标。为了在嘈杂的环境中有效探索,我们进一步构建了内在的奖励,这些奖励基于学习的表示,以捕获与任务相关的状态新颖性。我们得出了顺序信息瓶颈目标的变异上限,以实用优化,并提供了对派生的上限的信息理论解释。我们对一组基于图像的模拟控制任务进行的实验表明,与基于好奇心,熵最大化和信息获得的最新方法相比,我们的方法可实现更好的样品效率,以及对白噪声和自然视频背景的鲁棒性和鲁棒性。 。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
增强学习(RL)研究领域非常活跃,并具有重要的新贡献;特别是考虑到深RL(DRL)的新兴领域。但是,仍然需要解决许多科学和技术挑战,其中我们可以提及抽象行动的能力或在稀疏回报环境中探索环境的难以通过内在动机(IM)来解决的。我们建议通过基于信息理论的新分类法调查这些研究工作:我们在计算上重新审视了惊喜,新颖性和技能学习的概念。这使我们能够确定方法的优势和缺点,并展示当前的研究前景。我们的分析表明,新颖性和惊喜可以帮助建立可转移技能的层次结构,从而进一步抽象环境并使勘探过程更加健壮。
translated by 谷歌翻译
代理商学习广泛适用和通用策略具有重要意义,可以实现包括图像和文本描述在内的各种目标。考虑到这类感知的目标,深度加强学习研究的前沿是学习一个没有手工制作奖励的目标条件政策。要了解这种政策,最近的作品通常会像奖励到明确的嵌入空间中的给定目标的非参数距离。从不同的观点来看,我们提出了一种新的无监督学习方法,名为目标条件政策,具有内在动机(GPIM),共同学习抽象级别政策和目标条件的政策。摘要级别策略在潜在变量上被调节,以优化鉴别器,并发现进一步的不同状态,进一步呈现为目标条件策略的感知特定目标。学习鉴别者作为目标条件策略的内在奖励功能,以模仿抽象级别政策引起的轨迹。各种机器人任务的实验证明了我们所提出的GPIM方法的有效性和效率,其基本上优于现有技术。
translated by 谷歌翻译
钢筋学习的最新进展证明了其在超级人类水平上解决硬质孕代环境互动任务的能力。然而,由于大多数RL最先进的算法的样本低效率,即,需要大量培训集,因此在实际和现实世界任务中的应用目前有限。例如,在Dota 2中击败人类参与者的Openai五种算法已经训练了数千年的游戏时间。存在解决样本低效问题的几种方法,可以通过更好地探索环境来提供更有效的使用或旨在获得更相关和多样化的经验。然而,为了我们的知识,没有用于基于模型的算法的这种方法,其在求解具有高维状态空间的硬控制任务方面的高采样效率。这项工作连接了探索技术和基于模型的加强学习。我们设计了一种新颖的探索方法,考虑了基于模型的方法的特征。我们还通过实验证明我们的方法显着提高了基于模型的算法梦想家的性能。
translated by 谷歌翻译
Reinforcement learning (RL) gained considerable attention by creating decision-making agents that maximize rewards received from fully observable environments. However, many real-world problems are partially or noisily observable by nature, where agents do not receive the true and complete state of the environment. Such problems are formulated as partially observable Markov decision processes (POMDPs). Some studies applied RL to POMDPs by recalling previous decisions and observations or inferring the true state of the environment from received observations. Nevertheless, aggregating observations and decisions over time is impractical for environments with high-dimensional continuous state and action spaces. Moreover, so-called inference-based RL approaches require large number of samples to perform well since agents eschew uncertainty in the inferred state for the decision-making. Active inference is a framework that is naturally formulated in POMDPs and directs agents to select decisions by minimising expected free energy (EFE). This supplies reward-maximising (exploitative) behaviour in RL, with an information-seeking (exploratory) behaviour. Despite this exploratory behaviour of active inference, its usage is limited to discrete state and action spaces due to the computational difficulty of the EFE. We propose a unified principle for joint information-seeking and reward maximization that clarifies a theoretical connection between active inference and RL, unifies active inference and RL, and overcomes their aforementioned limitations. Our findings are supported by strong theoretical analysis. The proposed framework's superior exploration property is also validated by experimental results on partial observable tasks with high-dimensional continuous state and action spaces. Moreover, the results show that our model solves reward-free problems, making task reward design optional.
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
Planning has been very successful for control tasks with known environment dynamics. To leverage planning in unknown environments, the agent needs to learn the dynamics from interactions with the world. However, learning dynamics models that are accurate enough for planning has been a long-standing challenge, especially in image-based domains. We propose the Deep Planning Network (PlaNet), a purely model-based agent that learns the environment dynamics from images and chooses actions through fast online planning in latent space. To achieve high performance, the dynamics model must accurately predict the rewards ahead for multiple time steps. We approach this using a latent dynamics model with both deterministic and stochastic transition components. Moreover, we propose a multi-step variational inference objective that we name latent overshooting. Using only pixel observations, our agent solves continuous control tasks with contact dynamics, partial observability, and sparse rewards, which exceed the difficulty of tasks that were previously solved by planning with learned models. PlaNet uses substantially fewer episodes and reaches final performance close to and sometimes higher than strong model-free algorithms.
translated by 谷歌翻译
通过回顾一封来自情节记忆的过去的经验,可以通过回忆过去的经验来实现钢筋学习的样本效率。我们提出了一种新的基于模型的轨迹的集体记忆,解决了集体控制的当前限制。我们的记忆估计轨迹值,指导代理人朝着良好的政策。基于内存构建,我们通过动态混合控制统一模型的基于动态和习惯学习来构建互补学习模型,进入单个架构。实验表明,我们的模型可以比各种环境中的其他强力加强学习代理更快,更好地学习,包括随机和非马尔可夫环境。
translated by 谷歌翻译
最新专为加强学习任务而设计的算法着重于找到一个最佳解决方案。但是,在许多实际应用中,重要的是开发具有多种策略的合理代理商。在本文中,我们提出了多样性引导的政策优化(DGPO),这是一个在同一任务中发现多种策略的政策框架。我们的算法使用多样性目标来指导潜在的条件政策,以在单个培训程序中学习一系列不同的策略。具体而言,我们将算法形式化为多样性受限的优化问题和外部奖励约束优化问题的组合。我们将约束优化作为概率推理任务解决,并使用策略迭代来最大化派生的下限。实验结果表明,我们的方法有效地在各种强化学习任务中找到了各种策略。我们进一步表明,与其他基线相比,DGPO达到了更高的多样性评分,并且具有相似的样品复杂性和性能。
translated by 谷歌翻译
Learned world models summarize an agent's experience to facilitate learning complex behaviors. While learning world models from high-dimensional sensory inputs is becoming feasible through deep learning, there are many potential ways for deriving behaviors from them. We present Dreamer, a reinforcement learning agent that solves long-horizon tasks from images purely by latent imagination. We efficiently learn behaviors by propagating analytic gradients of learned state values back through trajectories imagined in the compact state space of a learned world model. On 20 challenging visual control tasks, Dreamer exceeds existing approaches in data-efficiency, computation time, and final performance.
translated by 谷歌翻译
这篇综述解决了在深度强化学习(DRL)背景下学习测量数据的抽象表示的问题。尽管数据通常是模棱两可,高维且复杂的解释,但许多动态系统可以通过一组低维状态变量有效地描述。从数据中发现这些状态变量是提高数据效率,稳健性和DRL方法的概括,应对维度的诅咒以及将可解释性和见解带入Black-Box DRL的关键方面。这篇综述通过描述用于学习世界的学习代表的主要深度学习工具,提供对方法和原则的系统观点,总结应用程序,基准和评估策略,并讨论开放的方式,从而提供了DRL中无监督的代表性学习的全面概述,挑战和未来的方向。
translated by 谷歌翻译
机器学习算法中多个超参数的最佳设置是发出大多数可用数据的关键。为此目的,已经提出了几种方法,例如进化策略,随机搜索,贝叶斯优化和启发式拇指规则。在钢筋学习(RL)中,学习代理在与其环境交互时收集的数据的信息内容严重依赖于许多超参数的设置。因此,RL算法的用户必须依赖于基于搜索的优化方法,例如网格搜索或Nelder-Mead单简单算法,这对于大多数R1任务来说是非常效率的,显着减慢学习曲线和离开用户的速度有目的地偏见数据收集的负担。在这项工作中,为了使RL算法更加用户独立,提出了一种使用贝叶斯优化的自主超参数设置的新方法。来自过去剧集和不同的超参数值的数据通过执行行为克隆在元学习水平上使用,这有助于提高最大化获取功能的加强学习变体的有效性。此外,通过紧密地整合在加强学习代理设计中的贝叶斯优化,还减少了收敛到给定任务的最佳策略所需的状态转换的数量。与其他手动调整和基于优化的方法相比,计算实验显示了有希望的结果,这突出了改变算法超级参数来增加所生成数据的信息内容的好处。
translated by 谷歌翻译
While reinforcement learning algorithms provide automated acquisition of optimal policies, practical application of such methods requires a number of design decisions, such as manually designing reward functions that not only define the task, but also provide sufficient shaping to accomplish it. In this paper, we view reinforcement learning as inferring policies that achieve desired outcomes, rather than as a problem of maximizing rewards. To solve this inference problem, we establish a novel variational inference formulation that allows us to derive a well-shaped reward function which can be learned directly from environment interactions. From the corresponding variational objective, we also derive a new probabilistic Bellman backup operator and use it to develop an off-policy algorithm to solve goal-directed tasks. We empirically demonstrate that this method eliminates the need to hand-craft reward functions for a suite of diverse manipulation and locomotion tasks and leads to effective goal-directed behaviors.
translated by 谷歌翻译
尽管学习环境内部模型的强化学习(RL)方法具有比没有模型的对应物更有效的样本效率,但学会从高维传感器中建模原始观察结果可能具有挑战性。先前的工作通过通过辅助目标(例如重建或价值预测)学习观察值的低维表示来解决这一挑战。但是,这些辅助目标与RL目标之间的一致性通常不清楚。在这项工作中,我们提出了一个单一的目标,该目标共同优化了潜在空间模型和政策,以实现高回报,同时保持自洽。这个目标是预期收益的下限。与基于模型的RL在策略探索或模型保证方面的先前范围不同,我们的界限直接依靠整体RL目标。我们证明,所得算法匹配或改善了最佳基于模型和无模型的RL方法的样品效率。尽管这种有效的样品方法通常在计算上是要求的,但我们的方法在较小的壁式锁定时间降低了50 \%。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译