我们研究了具有大规模分布数据的机器学习模型问题的随机分散优化。我们扩展了以降低方差(VR)的广泛使用的额外和挖掘方法,并提出了两种方法:VR-Extra和VR挖掘。提出的VR-Extra需要$ o(((\ kappa_s+n)\ log \ frac {1} {\ epsilon})$随机梯度评估和$ o(((\ kappa_b+kappa_c) } {\ epsilon})$通信回合以达到Precision $ \ Epsilon $,这是非加速梯度型方法中最好的复杂性,其中$ \ kappa_s $和$ \ kappa_b $是随机条件和批次条件号和批次条件号和批次条件号和批次条件强烈凸和平滑问题的数字分别为$ \ kappa_c $是通信网络的条件编号,而$ n $是每个分布式节点上的样本大小。所提出的VR挖掘的通信成本更高,为$ O((\ kappa_b+\ kappa_c^2)\ log \ frac {1} {\ epsilon})$。我们的随机梯度计算复杂性与单机电VR方法(例如SAG,SAGA和SVRG)相同,我们的通信复杂性分别与额外的挖掘和挖掘相同。为了进一步加快收敛速度​​,我们还提出了加速的VR-Extra和VR挖掘,并使用最佳$ O((((\ sqrt {n \ kappa_s}+n)+log \ frac {1} {\ epsilon} {\ epsilon})$随机梯度计算复杂度和$ O(\ sqrt {\ kappa_b \ kappa_c} \ log \ frac {1} {\ epsilon})$ communication Complactity。我们的随机梯度计算复杂性也与单基加速的VR方法(例如Katyusha)相同,我们的通信复杂性与加速的全批次分散方法(例如MSDA)相同。
translated by 谷歌翻译
在本文中,我们提出了一种称为ANITA的新型加速梯度方法,用于解决基本的有限和优化问题。具体而言,我们同时考虑一般凸面和强烈凸面设置:i)对于一般凸有限的和有限的问题,Anita改善了Varag给定的先前最新结果(Lan等,2019)。特别是,对于大规模问题或收敛错误不是很小,即$ n \ geq \ frac {1} {\ epsilon^2} $,Anita获得\ emph {first} optimal restion $ o(n )$,匹配Woodworth and Srebro(2016)提供的下限$ \ Omega(N)$,而先前的结果为$ O(N \ log \ frac {1} {\ epsilon})$ 。 ii)对于强烈凸有限的问题,我们还表明,Anita可以实现最佳收敛速率$ o \ big(((n+\ sqrt {\ frac {\ frac {nl} {\ mu}} {\ mu}})\ log \ log \ frac {1} {1} {1} {1} { \ epsilon} \ big)$匹配下限$ \ omega \ big(((n+\ sqrt {\ frac {nl} {nl} {\ mu}})\ log \ frac {1} {\ epsilon} {\ epsilon} \ big) Lan and Zhou(2015)。此外,与以前的加速算法(如Varag(Lan等,2019)和Katyusha(Allen-Zhu,2017年),Anita享有更简单的无环算法结构。此外,我们提供了一种新颖的\ emph {动态多阶段收敛分析},这是将先前结果提高到最佳速率的关键技术。我们认为,针对基本有限和有限问题的新理论率和新颖的收敛分析将直接导致许多其他相关问题(例如分布式/联合/联合/分散的优化问题)的关键改进(例如,Li和Richt \'Arik,2021年,2021年)。最后,数值实验表明,Anita收敛的速度比以前的最先进的Varag(Lan等,2019)更快,从而验证了我们的理论结果并证实了Anita的实践优势。
translated by 谷歌翻译
我们通过两种类型 - 主/工人(因此集中)架构(因此集中)架构和网格化(因此分散)网络,研究(强)凸起(强)凸起(强)凸起的鞍点问题(SPPS)的解决方案方法。由于统计数据相似度或其他,假设每个节点处的本地功能是相似的。我们为求解SPP的相当一般算法奠定了较低的复杂性界限。我们表明,在$ \ omega \ big(\ delta \ cdot \ delta / \ mu \ cdot \ log(1 / varepsilon)\ big)$ rounds over over over exoptimally $ \ epsilon> 0 $ over over master / workers网络通信,其中$ \ delta> 0 $测量本地功能的相似性,$ \ mu $是它们的强凸起常数,$ \ delta $是网络的直径。较低的通信复杂性绑定在网状网络上读取$ \ omega \ big(1 / {\ sqrt {\ rho}} \ cdot {\ delta} / {\ mu} \ cdot \ log(1 / varepsilon)\ big)$ ,$ \ rho $是用于邻近节点之间通信的八卦矩阵的(归一化)EIGENGAP。然后,我们提出算法与较低限制的网络(最多为日志因子)匹配。我们评估所提出的算法对强大的逻辑回归问题的有效性。
translated by 谷歌翻译
在互联网上的多种代理环境中的新兴应用程序,如互联网,网络传感,自主系统和联合学习,呼叫分散算法,以便在计算和通信方面是资源有效的有限总和优化。在本文中,我们考虑了原型设置,其中代理正在协作地工作,以通过在预定的网络拓扑中与其邻居通信来最小化局部损失函数的总和。我们开发了一种新的算法,称为分散的随机递归梯度方法(DESTRess),用于非耦合有限和优化,它与集中式算法的最佳增量一阶Oracle(IFO)复杂性匹配,用于查找一阶静止点,同时保持通信效率。详细的理论和数值比较证实了迭代在广泛的参数制度上提高现有分散算法的资源效率。 Descress利用了多个关键算法设计思路,包括随机激活的随机递增渐变渐变更新,具有用于本地计算的迷你批次,梯度跟踪,梯度跟踪,用于额外混合(即,多个八卦轮),用于偏移通信,以及仔细选择超参数和新的分析框架可证明达到理想的计算 - 通信权衡。
translated by 谷歌翻译
我们开发了一个通用框架,统一了几种基于梯度的随机优化方法,用于在集中式和分布式场景中,用于经验风险最小化问题。该框架取决于引入的增强图的引入,该图形由对样品进行建模和边缘建模设备设备间通信和设备内随机梯度计算。通过正确设计增强图的拓扑结构,我们能够作为特殊情况恢复为著名的本地-SGD和DSGD算法,并提供了统一的方差还原(VR)和梯度跟踪(GT)方法(例如Saga) ,本地-SVRG和GT-SAGA。我们还提供了统一的收敛分析,以依靠适当的结构化lyapunov函数,以实现平滑和(强烈的)凸目标,并且获得的速率可以恢复许多现有算法的最著名结果。速率结果进一步表明,VR和GT方法可以有效地消除设备内部和跨设备内的数据异质性,从而使算法与最佳解决方案的确切收敛性。数值实验证实了本文中的发现。
translated by 谷歌翻译
个性化联合学习(PFL)最近看到了巨大的进步,允许设计新颖的机器学习应用来保护培训数据的隐私。该领域的现有理论结果主要关注分布式优化以实现最小化问题。本文是第一个研究马鞍点问题的PFL(涵盖更广泛的优化问题),允许更丰富的应用程序,需要更多地解决最小化问题。在这项工作中,我们考虑最近提出的PFL设置与混合目标函数,一种方法将全球模型与当地分布式学习者相结合的方法。与最先前的工作不同,这仅考虑集中设置,我们在更一般和分散的设置中工作,允许我们设计和分析将设备连接到网络的更实用和联合的方法。我们提出了新的算法来解决这个问题,并在随机和确定性案例中提供平滑(强)凸起(强)凹凸点问题的理论分析。双线性问题的数值实验和对抗噪声的神经网络展示了所提出的方法的有效性。
translated by 谷歌翻译
联合学习(FL)是机器学习的一个子领域,在该子机学习中,多个客户试图在通信约束下通过网络进行协作学习模型。我们考虑在二阶功能相似性条件和强凸度下联合优化的有限和联合优化,并提出了两种新算法:SVRP和催化的SVRP。这种二阶相似性条件最近越来越流行,并且在包括分布式统计学习和差异性经验风险最小化在内的许多应用中得到满足。第一种算法SVRP结合了近似随机点评估,客户采样和降低方差。我们表明,当功能相似性足够高时,SVRP是沟通有效的,并且在许多现有算法上取得了卓越的性能。我们的第二个算法,催化的SVRP,是SVRP的催化剂加速变体,在二阶相似性和强凸度下,现有的联合优化算法可实现更好的性能,并均匀地改善了现有的算法。在分析这些算法的过程中,我们提供了可能具有独立关注的随机近端方法(SPPM)的新分析。我们对SPPM的分析很简单,允许进行近似近端评估,不需要任何平滑度假设,并且在通信复杂性上比普通分布式随机梯度下降显示出明显的好处。
translated by 谷歌翻译
我们考虑最小化三个凸功能的总和,其中第一个f是光滑的,第二个f是非平滑且可近的,第三个是与线性操作员L的非光滑近似函数的组成。此模板问题具有许多应用程序,有许多应用程序,有许多应用程序,,具有许多应用程序,,具有许多应用程序。例如,在图像处理和机器学习中。首先,我们为这个问题提出了一种新的原始偶算法,我们称之为PDDY。它是通过将davis-yin分裂应用于原始二重式产品空间中的单调包含的,在特定度量下,操作员在特定度量下是单调的。我们显示了三种现有算法(Condat-VU算法的两种形式) PD3O算法)具有相同的结构,因此PDDY是这种自洽的原始偶算法中的第四个丢失链接。这种表示可以简化收敛分析:它使我们能够总体上得出sublinear收敛速率,而线性收敛导致存在强凸度的存在。此外,在我们的广泛而灵活的分析框架内,我们提出了对算法的新随机概括,其中使用了Friancation降低F梯度的随机估计值,而不是真实的梯度。此外,我们作为pddy的特殊情况获得了线性收敛算法,用于在线性约束下最小化强凸功能f。我们讨论了其对分散优化的重要应用。
translated by 谷歌翻译
亚当是训练深神经网络的最具影响力的自适应随机算法之一,即使在简单的凸面设置中,它也被指出是不同的。许多尝试,例如降低自适应学习率,采用较大的批量大小,结合了时间去相关技术,寻求类似的替代物,\ textit {etc。},以促进Adam-type算法融合。与现有方法相反,我们引入了另一种易于检查的替代条件,这仅取决于基础学习率的参数和历史二阶时刻的组合,以确保通用ADAM的全球融合以解决大型融合。缩放非凸随机优化。这种观察结果以及这种足够的条件,对亚当的差异产生了更深刻的解释。另一方面,在实践中,无需任何理论保证,广泛使用了迷你ADAM和分布式ADAM。我们进一步分析了分布式系统中的批次大小或节点的数量如何影响亚当的收敛性,从理论上讲,这表明迷你批次和分布式亚当可以通过使用较大的迷你批量或较大的大小来线性地加速节点的数量。最后,我们应用了通用的Adam和Mini Batch Adam,具有足够条件来求解反例并在各种真实世界数据集上训练多个神经网络。实验结果完全符合我们的理论分析。
translated by 谷歌翻译
This paper studies the stochastic optimization for decentralized nonconvex-strongly-concave minimax problem. We propose a simple and efficient algorithm, called Decentralized Recursive gradient descEnt Ascent Method (DREAM), which requires $\mathcal{O}(\kappa^3\epsilon^{-3})$ stochastic first-order oracle (SFO) calls and $\mathcal{O}\big(\kappa^2\epsilon^{-2}/\sqrt{1-\lambda_2(W)}\,\big)$ communication rounds to find an $\epsilon$-stationary point, where $\kappa$ is the condition number and $\lambda_2(W)$ is the second-largest eigenvalue of the gossip matrix $W$. To the best our knowledge, DREAM is the first algorithm whose SFO and communication complexities simultaneously achieve the optimal dependency on $\epsilon$ and $\lambda_2(W)$ for this problem.
translated by 谷歌翻译
本文着重于随机鞍点问题的分布式优化。本文的第一部分专门针对平滑(强)(强)(强)凹形鞍点问题以及实现这些结合的近乎最佳算法的平滑(强)凸出的凹点鞍点问题的平滑(强)凸出的(强)凸出的凸出鞍点问题。接下来,我们提出了一种新的联合算法,用于分布式鞍点问题 - 额外的步骤本地SGD。对新方法的理论分析是针对强烈凸出的凹形和非convex-non-concave问题进行的。在本文的实验部分中,我们在实践中显示了方法的有效性。特别是,我们以分布方式训练甘恩。
translated by 谷歌翻译
Most distributed machine learning systems nowadays, including TensorFlow and CNTK, are built in a centralized fashion. One bottleneck of centralized algorithms lies on high communication cost on the central node. Motivated by this, we ask, can decentralized algorithms be faster than its centralized counterpart?Although decentralized PSGD (D-PSGD) algorithms have been studied by the control community, existing analysis and theory do not show any advantage over centralized PSGD (C-PSGD) algorithms, simply assuming the application scenario where only the decentralized network is available. In this paper, we study a D-PSGD algorithm and provide the first theoretical analysis that indicates a regime in which decentralized algorithms might outperform centralized algorithms for distributed stochastic gradient descent. This is because D-PSGD has comparable total computational complexities to C-PSGD but requires much less communication cost on the busiest node. We further conduct an empirical study to validate our theoretical analysis across multiple frameworks (CNTK and Torch), different network configurations, and computation platforms up to 112 GPUs. On network configurations with low bandwidth or high latency, D-PSGD can be up to one order of magnitude faster than its well-optimized centralized counterparts.
translated by 谷歌翻译
受到Mishchenko等人(2022)的最新突破的启发,他们首次表明局部梯度步骤可以导致可证明的通信加速,我们提出了一种替代算法,该算法获得了与他们的方法相同的通信加速度(Proxsskip)。但是,我们的方法非常不同:它基于Chambolle和Pock(2011)的著名方法,并具有多种不平凡的修改:i)我们允许通过适当的强烈凸出功能的代理操作员进行不精确的计算。基于梯度的方法(例如,GD,Fast GD或FSFOM),ii)我们对双重更新步骤进行仔细的修改,以保留线性收敛。我们的一般结果为强凸孔座鞍点问题提供了新的最先进率,其双线性耦合为特征,其特征是双重功能缺乏平滑度。当应用于联邦学习时,我们获得了Proxskip的理论上更好的替代方案:我们的方法需要更少的本地步骤($ O(\ kappa^{1/3})$或$ o(\ kappa^{1/4})$,与Proxskip的$ O(\ kappa^{1/2})$相比,并执行确定性的本地步骤。像Proxskip一样,我们的方法可以应用于连接网络的优化,我们在这里也获得了理论改进。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
我们考虑分散的优化问题,其中许多代理通过在基础通信图上交换来最大程度地减少其本地功能的平均值。具体而言,我们将自己置于异步模型中,其中只有一个随机部分在每次迭代时执行计算,而信息交换可以在所有节点之间进行,并以不对称的方式进行。对于此设置,我们提出了一种算法,该算法结合了整个网络上梯度跟踪和差异的差异。这使每个节点能够跟踪目标函数梯度的平均值。我们的理论分析表明,在预期混合矩阵的轻度连通性条件下,当局部目标函数强烈凸面时,算法会汇聚。特别是,我们的结果不需要混合矩阵是双随机的。在实验中,我们研究了一种广播机制,该机制将信息从计算节点传输到其邻居,并确认我们方法在合成和现实世界数据集上的线性收敛性。
translated by 谷歌翻译
本文重点介绍了解决光滑非凸强凹入最小问题的随机方法,这导致了由于其深度学习中的潜在应用而受到越来越长的关注(例如,深度AUC最大化,分布鲁棒优化)。然而,大多数现有算法在实践中都很慢,并且它们的分析围绕到几乎静止点的收敛。我们考虑利用Polyak-\ L Ojasiewicz(PL)条件来设计更快的随机算法,具有更强的收敛保证。尽管已经用于设计许多随机最小化算法的PL条件,但它们对非凸敏最大优化的应用仍然罕见。在本文中,我们提出并分析了基于近端的跨越时代的方法的通用框架,许多众所周知的随机更新嵌入。以{\ BF原始物镜差和二元间隙}的方式建立快速收敛。与现有研究相比,(i)我们的分析基于一个新的Lyapunov函数,包括原始物理差距和正则化功能的二元间隙,(ii)结果更加全面,提高了更好的依赖性的速率不同假设下的条件号。我们还开展深层和非深度学习实验,以验证我们的方法的有效性。
translated by 谷歌翻译
梯度压缩是一种流行的技术,可改善机器学习模型分布式培训中随机一阶方法的沟通复杂性。但是,现有作品仅考虑随机梯度的替换采样。相比之下,在实践中众所周知,最近从理论上证实,基于没有替代抽样的随机方法,例如随机改组方法(RR)方法,其性能要比用更换梯度进行梯度的方法更好。在这项工作中,我们在文献中缩小了这一差距,并通过梯度压缩和没有替代抽样的方法提供了第一次分析方法。我们首先使用梯度压缩(Q-RR)开发一个随机重新填充的分布式变体,并展示如何通过使用控制迭代来减少梯度量化的方差。接下来,为了更好地适合联合学习应用程序,我们结合了本地计算,并提出了一种称为Q-Nastya的Q-RR的变体。 Q-Nastya使用本地梯度步骤以及不同的本地和全球步骤。接下来,我们还展示了如何在此设置中减少压缩差异。最后,我们证明了所提出的方法的收敛结果,并概述了它们在现有算法上改进的几种设置。
translated by 谷歌翻译
本文研究了协同多智能体增强学习(MARL)的分布式政策梯度,在通信网络上的代理人旨在找到最佳政策,以最大限度地提高所有代理人的当地返回的平均值。由于政策梯度的非凹形性能函数,用于凸面问题的现有分布式随机优化方法不能直接用于Marl中的政策梯度。本文提出了一种具有方差减少和渐变跟踪的分布式策略梯度,以解决政策梯度的高差,并利用重要的重量来解决采样过程中的非静止问题。然后,我们在平均平均固定间隙上提供一个上限,这取决于迭代的数量,迷你批量大小,秒钟大小,问题参数和网络拓扑。我们进一步建立了样本和通信复杂性,以获得$ \ epsilon $-upprymate静止点。对MARL控制问题的数值实验进行了验证了所提出算法的有效性。
translated by 谷歌翻译
我们提供了新的基于梯度的方法,以便有效解决广泛的病态化优化问题。我们考虑最小化函数$ f:\ mathbb {r} ^ d \ lightarrow \ mathbb {r} $的问题,它是隐含的可分解的,作为$ m $未知的非交互方式的总和,强烈的凸起功能并提供方法这解决了这个问题,这些问题是缩放(最快的对数因子)作为组件的条件数量的平方根的乘积。这种复杂性绑定(我们证明几乎是最佳的)可以几乎指出的是加速梯度方法的几乎是指数的,这将作为$ F $的条件数量的平方根。此外,我们提供了求解该多尺度优化问题的随机异标变体的有效方法。而不是学习$ F $的分解(这将是过度昂贵的),而是我们的方法应用一个清洁递归“大步小步”交错标准方法。由此产生的算法使用$ \ tilde {\ mathcal {o}}(d m)$空间,在数字上稳定,并打开门以更细粒度的了解凸优化超出条件号的复杂性。
translated by 谷歌翻译
我们的目标是使随机梯度$ \ sigma^2 $在随机梯度和(ii)问题依赖性常数中自适应(i)自适应。当最大程度地减少条件编号$ \ kappa $的平滑,强大的功能时,我们证明,$ t $ t $ toerations sgd的$ t $ toerations sgd具有指数降低的阶跃尺寸和对平滑度的知识可以实现$ \ tilde {o} \ left(\ exp) \ left(\ frac {-t} {\ kappa} \ right) + \ frac {\ sigma^2} {t} \ right)$ rate,而又不知道$ \ sigma^2 $。为了适应平滑度,我们使用随机线路搜索(SLS)并显示(通过上下距离),其SGD的SGD与SLS以所需的速率收敛,但仅针对溶液的邻域。另一方面,我们证明具有平滑度的离线估计值的SGD会收敛到最小化器。但是,其速率与估计误差成正比的速度减慢。接下来,我们证明具有Nesterov加速度和指数步骤尺寸(称为ASGD)的SGD可以实现接近最佳的$ \ tilde {o} \ left(\ exp \ left(\ frac {-t} {-t} {\ sqrt {\ sqrt {\ sqrt { \ kappa}}} \ right) + \ frac {\ sigma^2} {t} \ right)$ rate,而无需$ \ sigma^2 $。当与平滑度和强频率的离线估计值一起使用时,ASGD仍会收敛到溶液,尽管速度较慢。我们从经验上证明了指数级尺寸的有效性以及新型SLS的变体。
translated by 谷歌翻译