预训练在机器学习的不同领域表现出成功,例如计算机视觉(CV),自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。即使记录了大量的电子健康记录(EHR)数据,但如果数据收集到小型医院或处理罕见疾病的交易,数据和标签也可能稀缺。在这种情况下,对较大的EHR数据进行预训练可以改善模型性能。在本文中,我们将无监督的预培训应用于异质的多模式EHR数据,以预测患者。为了对这些数据进行建模,我们利用大量的人群图表。我们首先设计基于图形变压器的网络体系结构,旨在处理EHR数据中发生的各种输入特征类型,例如连续,离散和时间序列特征,从而允许更好的多模式数据融合。此外,我们设计基于蒙版的插入方法的预训练方法,以在对不同的最终任务进行微调之前对网络进行预培训。预训练是以一种完全无监督的方式进行的,这为未来具有不同任务和类似方式的大型公共数据集预先培训奠定了基础。我们在两个患者记录的医学数据集(Tadpole和Mimic-III)上测试我们的方法,包括成像和非成像功能以及不同的预测任务。我们发现,我们提出的基于图形的预训练方法有助于在人群水平上对数据进行建模,并进一步改善Mimic的AUC方面的AUC,平均AUC的性能,而Tadpole则为7.64%。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉,自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。记录了大量的临床记录,但是对于在小型医院收集的数据或处理罕见疾病的数据仍可能稀缺数据和标签。在这种情况下,对较大的未标记临床数据进行预训练可以提高性能。在本文中,我们提出了专为异质的多模式临床数据设计的新型无监督的预训练技术,用于通过蒙版语言建模(MLM)启发的患者预测,通过利用对人群图的深度学习来启发。为此,我们进一步提出了一个基于图形转换器的网络,该网络旨在处理异质临床数据。通过将基于掩盖的预训练与基于变压器的网络相结合,我们将基于掩盖的其他域中训练的成功转化为异质临床数据。我们使用三个医学数据集Tadpole,Mimic-III和一个败血症预测数据集,在自我监督和转移学习设置中展示了我们的预训练方法的好处。我们发现,我们提出的培训方法有助于对患者和人群水平的数据进行建模,并提高所有数据集中不同微调任务的性能。
translated by 谷歌翻译
大量的电子健康记录(EHR)在改善医疗保健方面产生了巨大的潜力。临床代码(结构化数据)和临床叙述(非结构化数据)是EHR中的两个重要文本模式。临床代码传达医院期间的诊断和治疗信息,临床注释带有患者遭遇的临床提供者的叙述。它们不孤立地存在,并且可以在大多数现实生活中的临床情况下相互补充。但是,大多数现有的面向EHR的研究要么集中于特定模式,要么以直接方式整合来自不同模态的数据,这忽略了它们之间的内在相互作用。为了解决这些问题,我们提出了一个名为MEDM-PLM的医学多模式预训练的语言模型,以了解对结构化和非结构化数据的增强EHR表示。在MEDM-PLM中,首先采用了两个基于变压器的神经网络组件来从每种模式中学习代表性特征。然后引入跨模块模块以建模其相互作用。我们在模拟III数据集上预先训练MEDM-PLM,并验证了该模型对三个下游临床任务的有效性,即药物建议,30天的再入院预测和ICD编码。与最先进的方法相比,广泛的实验证明了MEDM-PLM的功率。进一步的分析和可视化表明了我们的模型的鲁棒性,这有可能为临床决策提供更全面的解释。
translated by 谷歌翻译
我们利用深度顺序模型来解决预测患者医疗保健利用的问题,这可能有助于政府更好地为未来的医疗保健使用提供资源。具体地,我们研究\纺织{发散亚组}的问题,其中较小的人口小组中的结果分布大大偏离了一般人群的群体。如果亚组的尺寸非常小(例如,稀有疾病),则对不同亚组的专业模型建造专门模型的传统方法可能是有问题的。为了解决这一挑战,我们首先开发一种新的无关注顺序模型,SANSFORMERS,灌输了适合在电子医疗记录中建模临床码的归纳偏差。然后,我们通过在整个健康登记处预先培训每个模型(接近100万名患者)之前,设计了一个特定的自我监督目标,并展示其有效性,特别是稀缺数据设置,特别是在整个健康登记处(接近一百万名患者)进行微调下游任务不同的子组。我们使用两个数据来源与LSTM和变压器模型进行比较新的SANSFARER架构和辅助医疗利用预测的多任务学习目标。凭经验,无关注的Sansformer模型在实验中始终如一地执行,在大多数情况下以至少$ \ SIM 10 $ \%表现出在大多数情况下的基线。此外,在预测医院访问数量时,自我监督的预训练将在整个始终提高性能,例如通过超过$ \ sim 50 $ \%(和高度为800美元\%)。
translated by 谷歌翻译
EHR Systems缺乏统一的代码系统,以陈旧的医学概念,这使ASA屏障在大规模到多个诊所和袜子的大规模中部署深层学习博客。为了克服这个问题,我们介绍了基于embedding的嵌入式嵌入式,DesCEMB,代码无话代表学习框架Forehr。DESCEM利用神经语言的FlexibIL-ITY,了解模型使用它们的文本描述,而不是直接映射每个事件TOA专用嵌入的临床事件。DESCEMB以遥控前提的基于嵌入的嵌入式代码,尤其是在零拍摄TransferTask(一家医院到另一医院),并且能够为异端代码数据集进行单一统一模型。
translated by 谷歌翻译
在这项工作中,我们使用功能磁共振成像(fMRI)专注于具有挑战性的任务,神经疾病分类。在基于人群的疾病分析中,图卷积神经网络(GCN)取得了显着的成功。但是,这些成就与丰富的标记数据密不可分,对虚假信号敏感。为了改善在标签有效的设置下的fMRI表示学习和分类,我们建议在GCN上使用新颖的,理论驱动的自我监督学习(SSL)框架,即在FMRI分析门上用于时间自我监督学习的CCA。具体而言,要求设计合适有效的SSL策略来提取fMRI的形成和鲁棒特征。为此,我们研究了FMRI动态功能连接(FC)的几种新的图表增强策略,用于SSL培训。此外,我们利用规范相关分析(CCA)在不同的时间嵌入中,并呈现理论含义。因此,这产生了一个新颖的两步GCN学习程序,该过程包括在未标记的fMRI人群图上的(i)SSL组成,并且(ii)在小标记的fMRI数据集上进行了微调,以进行分类任务。我们的方法在两个独立的fMRI数据集上进行了测试,这表明自闭症和痴呆症诊断方面表现出色。
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
电子健康记录(EHR)已经大量用于现代医疗保健系统,用于将患者的入场信息记录到医院。许多数据驱动方法采用EHR中的时间特征,用于预测患者的特定疾病,阅告期或诊断。然而,由于某些时间事件的监督培训中固有的标签,大多数现有的预测模型不能充分利用EHR数据。此外,对于现有的作品很难同时提供通用和个性化的解释性。为解决这些挑战,我们首先提出了一种具有信息流到分层结构的信息流的双曲线嵌入方法。我们将这些预先训练的表征纳入了图形神经网络以检测疾病并发症,并设计一种计算特定疾病和入学贡献的多级注意方法,从而提高个性化的可解释性。我们在自我监督的学习框架中提出了一个新的层次结构增强的历史预测代理任务,以充分利用EHR数据和利用医疗领域知识。我们开展一套全面的实验和案例研究,广泛使用的公开可用的EHR数据集以验证我们模型的有效性。结果表明我们的模型在预测任务和可解释能力方面的优势。
translated by 谷歌翻译
对表格数据的深度学习的最新工作表明了深层表格模型的强劲表现,通常会弥合梯度增强的决策树和神经网络之间的差距。除了准确性之外,神经模型的主要优点是它们学习可重复使用的功能,并且在新域中很容易进行微调。该属性通常在计算机视觉和自然语言应用中被利用,在特定于任务的培训数据稀缺时,转移学习是必不可少的。在这项工作中,我们证明上游数据使表格神经网络比广泛使用的GBDT模型具有决定性的优势。我们为表格转移学习提出了一个现实的医学诊断基准,并提出了使用上游数据来通过各种表格神经网络体系结构来提高性能的方法指南。最后,我们为上游和下游特征集不同的情况提出了一种伪特征方法,在现实世界中,特定于表格的问题广泛。我们的代码可在https://github.com/levinroman/tabular-transfer-learning上找到。
translated by 谷歌翻译
Although substantial efforts have been made using graph neural networks (GNNs) for AI-driven drug discovery (AIDD), effective molecular representation learning remains an open challenge, especially in the case of insufficient labeled molecules. Recent studies suggest that big GNN models pre-trained by self-supervised learning on unlabeled datasets enable better transfer performance in downstream molecular property prediction tasks. However, they often require large-scale datasets and considerable computational resources, which is time-consuming, computationally expensive, and environmentally unfriendly. To alleviate these limitations, we propose a novel pre-training model for molecular representation learning, Bi-branch Masked Graph Transformer Autoencoder (BatmanNet). BatmanNet features two tailored and complementary graph autoencoders to reconstruct the missing nodes and edges from a masked molecular graph. To our surprise, BatmanNet discovered that the highly masked proportion (60%) of the atoms and bonds achieved the best performance. We further propose an asymmetric graph-based encoder-decoder architecture for either nodes and edges, where a transformer-based encoder only takes the visible subset of nodes or edges, and a lightweight decoder reconstructs the original molecule from the latent representation and mask tokens. With this simple yet effective asymmetrical design, our BatmanNet can learn efficiently even from a much smaller-scale unlabeled molecular dataset to capture the underlying structural and semantic information, overcoming a major limitation of current deep neural networks for molecular representation learning. For instance, using only 250K unlabelled molecules as pre-training data, our BatmanNet with 2.575M parameters achieves a 0.5% improvement on the average AUC compared with the current state-of-the-art method with 100M parameters pre-trained on 11M molecules.
translated by 谷歌翻译
Many applications of machine learning require a model to make accurate predictions on test examples that are distributionally different from training ones, while task-specific labels are scarce during training. An effective approach to this challenge is to pre-train a model on related tasks where data is abundant, and then fine-tune it on a downstream task of interest. While pre-training has been effective in many language and vision domains, it remains an open question how to effectively use pre-training on graph datasets. In this paper, we develop a new strategy and self-supervised methods for pre-training Graph Neural Networks (GNNs). The key to the success of our strategy is to pre-train an expressive GNN at the level of individual nodes as well as entire graphs so that the GNN can learn useful local and global representations simultaneously. We systematically study pre-training on multiple graph classification datasets. We find that naïve strategies, which pre-train GNNs at the level of either entire graphs or individual nodes, give limited improvement and can even lead to negative transfer on many downstream tasks. In contrast, our strategy avoids negative transfer and improves generalization significantly across downstream tasks, leading up to 9.4% absolute improvements in ROC-AUC over non-pre-trained models and achieving state-of-the-art performance for molecular property prediction and protein function prediction.However, pre-training on graph datasets remains a hard challenge. Several key studies (
translated by 谷歌翻译
Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provides useful insights for better understanding and utilization of missing values in time series analysis.
translated by 谷歌翻译
最近应用于从密集护理单位收集的时间序列的机器学习方法的成功暴露了缺乏标准化的机器学习基准,用于开发和比较这些方法。虽然原始数据集(例如MIMIC-IV或EICU)可以在物理体上自由访问,但是选择任务和预处理的选择通常是针对每个出版物的ad-hoc,限制出版物的可比性。在这项工作中,我们的目标是通过提供覆盖大型ICU相关任务的基准来改善这种情况。使用HirID数据集,我们定义与临床医生合作开发的多个临床相关任务。此外,我们提供可重复的端到端管道,以构建数据和标签。最后,我们提供了对当前最先进的序列建模方法的深入分析,突出了这种类型数据的深度学习方法的一些限制。通过这款基准,我们希望为研究界提供合理比较的可能性。
translated by 谷歌翻译
多模式融合方法旨在整合来自不同数据源的信息。与天然数据集不同,例如在视听应用中,样本由“配对”模式组成,医疗保健中的数据通常异步收集。因此,对于给定样品需要所有方式,对于临床任务而言并不现实,并且在训练过程中显着限制了数据集的大小。在本文中,我们提出了Medfuse,这是一种概念上简单但有前途的基于LSTM的融合模块,可以容纳Uni-Mododal和多模式输入。我们使用MIMIC-IV数据集中的临床时间序列数据以及Mimic-CXR中的相应的胸部X射线图像,评估了融合方法,并引入了院内死亡率预测和表型分类的新基准结果。与更复杂的多模式融合策略相比,MEDFUSE在完全配对的测试集上的差距很大。它在部分配对的测试集中还保持了强大的稳定性,其中包含带有缺少胸部X射线图像的样品。我们发布了我们的可重复性代码,并在将来对竞争模型进行评估。
translated by 谷歌翻译
我们介绍了用于分析功能磁共振成像(FMRI)数据的TFF变压器框架。TFF采用基于变压器的架构和两阶段培训方法。首先,自我监督培训适用于FMRI扫描的集合,其中模型培训用于重建3D卷数据。其次,预训练模型在特定任务上进行了微调,利用地面真理标签。我们的结果显示了各种FMRI任务的最先进的性能,包括年龄和性别预测,以及精神分裂症认可。
translated by 谷歌翻译
实验室检测和药物处方是日常临床实践中最重要的两种惯例。开发一种人工智能系统,可以自动制造实验室测试借助和药物建议可以节省潜在的冗余实验室测试,并告知医生更有效的处方。我们展示了一个智能医疗系统(名为Medgcn),可以根据其不完整的实验室测试自动推荐患者的药物,甚至可以准确估计未被采取的实验室值。在我们的系统中,我们将多种类型的医疗实体之间的复杂关系与其在异构图中的固有功能集成。然后,我们模拟图表以了解基于图形卷积网络(GCN)图表中的每个实体的分布式表示。通过图形卷积网络的传播,实体表示可以包含多种类型的医疗信息,可以使多种医疗任务受益。此外,我们介绍了交叉正则化策略,以减少多任务之间的交互的多任务培训过度装备。在本研究中,我们构建一个图形,以将4种类型的医疗实体,即患者,遇到,实验室测试和药物相关联,并应用图形神经网络来学习用于药物推荐和实验室测试贷款的节点嵌入。我们在两个现实世界数据集上验证了我们的Medgcn模型:nmedw和mimic-III。两个数据集的实验结果表明,我们的模型可以在两个任务中表现出最先进的。我们认为,我们的创新系统可以提供有希望和可靠的方法来帮助医生制作药物处置处方,并节省潜在的冗余实验室测试。
translated by 谷歌翻译
疾病预测是医学应用中的知名分类问题。 GCNS提供了一个强大的工具,用于分析患者相对于彼此的特征。这可以通过将问题建模作为图形节点分类任务来实现,其中每个节点是患者。由于这种医学数据集的性质,类别不平衡是疾病预测领域的普遍存在问题,其中类的分布是歪曲的。当数据中存在类别不平衡时,现有的基于图形的分类器倾向于偏向于主要类别并忽略小类中的样本。另一方面,所有患者中罕见阳性病例的正确诊断在医疗保健系统中至关重要。在传统方法中,通过将适当的权重分配给丢失函数中的类别来解决这种不平衡,这仍然依赖于对异常值敏感的权重的相对值,并且在某些情况下偏向于小类(ES)。在本文中,我们提出了一种重加权的对抗性图形卷积网络(RA-GCN),以防止基于图形的分类器强调任何特定类的样本。这是通过将基于图形的神经网络与每个类相关联来完成的,这负责加权类样本并改变分类器的每个样本的重要性。因此,分类器自身调节并确定类之间的边界,更加关注重要样本。分类器和加权网络的参数受到侵犯方法训练。我们在合成和三个公共医疗数据集上显示实验。与最近的方法相比,ra-gcn展示了与最近的方法在所有三个数据集上识别患者状态的方法相比。详细分析作为合成数据集的定量和定性实验提供。
translated by 谷歌翻译
电子健康记录(EHRS)在患者级别汇总了多种信息,并保留了整个时间内患者健康状况进化的轨迹代表。尽管此信息提供了背景,并且可以由医生利用以监控患者的健康并进行更准确的预后/诊断,但患者记录可以包含长期跨度的信息,这些信息与快速生成的医疗数据速率相结合,使临床决策变得更加复杂。患者轨迹建模可以通过以可扩展的方式探索现有信息来帮助,并可以通过促进预防医学实践来增强医疗保健质量。我们为建模患者轨迹提出了一种解决方案,该解决方案结合了不同类型的信息并考虑了临床数据的时间方面。该解决方案利用了两种不同的架构:一组支持灵活的输入功能集,以将患者的录取转换为密集的表示;以及在基于复发的架构中进行的第二次探索提取的入院表示,其中使用滑动窗口机制在子序列中处理患者轨迹。使用公开可用的模仿III临床数据库评估了开发的解决方案,以两种不同的临床结果,意外的患者再入院和疾病进展。获得的结果证明了第一个体系结构使用单个患者入院进行建模和诊断预测的潜力。虽然临床文本中的信息并未显示在其他现有作品中观察到的判别能力,但这可以通过微调临床模型来解释。最后,我们使用滑动窗口机制来表示基于序列的体系结构的潜力,以表示输入数据,从而获得与其他现有解决方案的可比性能。
translated by 谷歌翻译
Routine clinical visits of a patient produce not only image data, but also non-image data containing clinical information regarding the patient, i.e., medical data is multi-modal in nature. Such heterogeneous modalities offer different and complementary perspectives on the same patient, resulting in more accurate clinical decisions when they are properly combined. However, despite its significance, how to effectively fuse the multi-modal medical data into a unified framework has received relatively little attention. In this paper, we propose an effective graph-based framework called HetMed (Heterogeneous Graph Learning for Multi-modal Medical Data Analysis) for fusing the multi-modal medical data. Specifically, we construct a multiplex network that incorporates multiple types of non-image features of patients to capture the complex relationship between patients in a systematic way, which leads to more accurate clinical decisions. Extensive experiments on various real-world datasets demonstrate the superiority and practicality of HetMed. The source code for HetMed is available at https://github.com/Sein-Kim/Multimodal-Medical.
translated by 谷歌翻译
现实世界中的电子健康记录(EHR)通常会受到高丢失数据率的困扰。例如,在我们的EHR中,对于某些功能,缺失率可能高达90%,所有功能的平均缺失率约为70%。我们提出了一种时间感知的双交叉访问的缺失价值插补方法,称为ta-dualCV,该方法自发利用跨特征和纵向依赖性的多元依赖性在EHRS中从有限的可观察记录中提取的信息。具体而言,ta-dualCV捕获了不同特征测量值的缺失模式的潜在结构,它还考虑了时间连续性,并根据时间步长和不规则的时间间隔捕获了潜在的时间缺失模式。使用三种类型的任务使用三个大型现实世界EHR评估TA-DUALCV:无监督的选级任务,通过更改掩盖率高达90%的掩码率和使用长期短期记忆(LSTM)进行监督的24小时早期预测对化粪池休克的早期预测(LSTM) 。我们的结果表明,TA-DUALCV在两种任务上的所有现有最先进的归纳基线(例如底特律和驯服)的表现明显好。
translated by 谷歌翻译