大量的电子健康记录(EHR)在改善医疗保健方面产生了巨大的潜力。临床代码(结构化数据)和临床叙述(非结构化数据)是EHR中的两个重要文本模式。临床代码传达医院期间的诊断和治疗信息,临床注释带有患者遭遇的临床提供者的叙述。它们不孤立地存在,并且可以在大多数现实生活中的临床情况下相互补充。但是,大多数现有的面向EHR的研究要么集中于特定模式,要么以直接方式整合来自不同模态的数据,这忽略了它们之间的内在相互作用。为了解决这些问题,我们提出了一个名为MEDM-PLM的医学多模式预训练的语言模型,以了解对结构化和非结构化数据的增强EHR表示。在MEDM-PLM中,首先采用了两个基于变压器的神经网络组件来从每种模式中学习代表性特征。然后引入跨模块模块以建模其相互作用。我们在模拟III数据集上预先训练MEDM-PLM,并验证了该模型对三个下游临床任务的有效性,即药物建议,30天的再入院预测和ICD编码。与最先进的方法相比,广泛的实验证明了MEDM-PLM的功率。进一步的分析和可视化表明了我们的模型的鲁棒性,这有可能为临床决策提供更全面的解释。
translated by 谷歌翻译
背景:电子健康记录(EHRS)包含丰富的患者健康历史信息,这通常包括结构化和非结构化数据。已经有许多研究专注于从结构化数据中蒸馏有价值的信息,例如疾病代码,实验室测试结果和治疗方法。但是,依托结构化数据可能不足反映患者的综合信息,此类数据可能偶尔含有错误的记录。目的:随着机器学习(ML)和深度学习(DL)技术的最近进步,越来越多的研究通过纳入非结构化的自由文本数据,寻求获得更准确的结果。本文评论了使用多模式数据的研究,即结构化和非结构化数据的组合,从EHRS作为传统ML或DL模型的输入来解决目标任务。材料和方法:我们在电气和电子工程师(IEEE)数字图书馆(IEEE)数字图书馆,PubMed和Compution Machion(ACM)数字文章中搜索了与基于ML的多模式EHR研究相关的制品。结果与讨论:最后94项包括研究,我们专注于如何使用常规ML和DL技术合并和互动的数据来自不同方式的数据,以及如何在与EHR相关的任务中应用这些算法。此外,我们研究了这些融合方法的优点和局限,并表明了基于ML的多模式EHR研究的未来方向。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉,自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。记录了大量的临床记录,但是对于在小型医院收集的数据或处理罕见疾病的数据仍可能稀缺数据和标签。在这种情况下,对较大的未标记临床数据进行预训练可以提高性能。在本文中,我们提出了专为异质的多模式临床数据设计的新型无监督的预训练技术,用于通过蒙版语言建模(MLM)启发的患者预测,通过利用对人群图的深度学习来启发。为此,我们进一步提出了一个基于图形转换器的网络,该网络旨在处理异质临床数据。通过将基于掩盖的预训练与基于变压器的网络相结合,我们将基于掩盖的其他域中训练的成功转化为异质临床数据。我们使用三个医学数据集Tadpole,Mimic-III和一个败血症预测数据集,在自我监督和转移学习设置中展示了我们的预训练方法的好处。我们发现,我们提出的培训方法有助于对患者和人群水平的数据进行建模,并提高所有数据集中不同微调任务的性能。
translated by 谷歌翻译
电子健康记录(EHR)已经大量用于现代医疗保健系统,用于将患者的入场信息记录到医院。许多数据驱动方法采用EHR中的时间特征,用于预测患者的特定疾病,阅告期或诊断。然而,由于某些时间事件的监督培训中固有的标签,大多数现有的预测模型不能充分利用EHR数据。此外,对于现有的作品很难同时提供通用和个性化的解释性。为解决这些挑战,我们首先提出了一种具有信息流到分层结构的信息流的双曲线嵌入方法。我们将这些预先训练的表征纳入了图形神经网络以检测疾病并发症,并设计一种计算特定疾病和入学贡献的多级注意方法,从而提高个性化的可解释性。我们在自我监督的学习框架中提出了一个新的层次结构增强的历史预测代理任务,以充分利用EHR数据和利用医疗领域知识。我们开展一套全面的实验和案例研究,广泛使用的公开可用的EHR数据集以验证我们模型的有效性。结果表明我们的模型在预测任务和可解释能力方面的优势。
translated by 谷歌翻译
将电子健康记录(EHR)自动分为诊断代码对NLP社区的挑战。最先进的方法将此问题视为多标签分类问题,并提出了各种架构来对此问题进行建模。但是,这些系统并未利用验证的语言模型的出色性能,这在自然语言理解任务上实现了出色的性能。先前的工作表明,经常使用的填充方案在此任务上表现不佳。因此,本文旨在分析表现不佳的原因,并通过验证的语言模型为自动编码开发一个框架。我们通过实验发现了三个主要问题:1)大标签空间,2)长输入序列和3)域预读和微调之间的域不匹配。我们提出了PLMICD,该框架通过各种策略来应对挑战。实验结果表明,我们提出的框架可以在基准模拟数据上以多个指标来克服挑战和实现最新性能。源代码可从https://github.com/miulab/plm-icd获得
translated by 谷歌翻译
电子健康记录(EHRS)在患者级别汇总了多种信息,并保留了整个时间内患者健康状况进化的轨迹代表。尽管此信息提供了背景,并且可以由医生利用以监控患者的健康并进行更准确的预后/诊断,但患者记录可以包含长期跨度的信息,这些信息与快速生成的医疗数据速率相结合,使临床决策变得更加复杂。患者轨迹建模可以通过以可扩展的方式探索现有信息来帮助,并可以通过促进预防医学实践来增强医疗保健质量。我们为建模患者轨迹提出了一种解决方案,该解决方案结合了不同类型的信息并考虑了临床数据的时间方面。该解决方案利用了两种不同的架构:一组支持灵活的输入功能集,以将患者的录取转换为密集的表示;以及在基于复发的架构中进行的第二次探索提取的入院表示,其中使用滑动窗口机制在子序列中处理患者轨迹。使用公开可用的模仿III临床数据库评估了开发的解决方案,以两种不同的临床结果,意外的患者再入院和疾病进展。获得的结果证明了第一个体系结构使用单个患者入院进行建模和诊断预测的潜力。虽然临床文本中的信息并未显示在其他现有作品中观察到的判别能力,但这可以通过微调临床模型来解释。最后,我们使用滑动窗口机制来表示基于序列的体系结构的潜力,以表示输入数据,从而获得与其他现有解决方案的可比性能。
translated by 谷歌翻译
Transformer models have achieved great success across many NLP problems. However, previous studies in automated ICD coding concluded that these models fail to outperform some of the earlier solutions such as CNN-based models. In this paper we challenge this conclusion. We present a simple and scalable method to process long text with the existing transformer models such as BERT. We show that this method significantly improves the previous results reported for transformer models in ICD coding, and is able to outperform one of the prominent CNN-based methods.
translated by 谷歌翻译
There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI systems utilizing clinical narratives. However, there are few clinical language models, the largest of which trained in the clinical domain is comparatively small at 110 million parameters (compared with billions of parameters in the general domain). It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured EHRs. In this study, we develop from scratch a large clinical language model - GatorTron - using >90 billion words of text (including >82 billion words of de-identified clinical text) and systematically evaluate it on 5 clinical NLP tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), and medical question answering (MQA). We examine how (1) scaling up the number of parameters and (2) scaling up the size of the training data could benefit these NLP tasks. GatorTron models scale up the clinical language model from 110 million to 8.9 billion parameters and improve 5 clinical NLP tasks (e.g., 9.6% and 9.5% improvement in accuracy for NLI and MQA), which can be applied to medical AI systems to improve healthcare delivery. The GatorTron models are publicly available at: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og.
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
我们利用深度顺序模型来解决预测患者医疗保健利用的问题,这可能有助于政府更好地为未来的医疗保健使用提供资源。具体地,我们研究\纺织{发散亚组}的问题,其中较小的人口小组中的结果分布大大偏离了一般人群的群体。如果亚组的尺寸非常小(例如,稀有疾病),则对不同亚组的专业模型建造专门模型的传统方法可能是有问题的。为了解决这一挑战,我们首先开发一种新的无关注顺序模型,SANSFORMERS,灌输了适合在电子医疗记录中建模临床码的归纳偏差。然后,我们通过在整个健康登记处预先培训每个模型(接近100万名患者)之前,设计了一个特定的自我监督目标,并展示其有效性,特别是稀缺数据设置,特别是在整个健康登记处(接近一百万名患者)进行微调下游任务不同的子组。我们使用两个数据来源与LSTM和变压器模型进行比较新的SANSFARER架构和辅助医疗利用预测的多任务学习目标。凭经验,无关注的Sansformer模型在实验中始终如一地执行,在大多数情况下以至少$ \ SIM 10 $ \%表现出在大多数情况下的基线。此外,在预测医院访问数量时,自我监督的预训练将在整个始终提高性能,例如通过超过$ \ sim 50 $ \%(和高度为800美元\%)。
translated by 谷歌翻译
近年来,人们对使用电子病历(EMR)进行次要目的特别感兴趣,以增强医疗保健提供的质量和安全性。 EMR倾向于包含大量有价值的临床笔记。学习嵌入是一种将笔记转换为使其可比性的格式的方法。基于变压器的表示模型最近取得了巨大的飞跃。这些模型在大型在线数据集上进行了预训练,以有效地了解自然语言文本。学习嵌入的质量受临床注释如何用作表示模型的输入的影响。临床注释有几个部分具有不同水平的信息价值。医疗保健提供者通常使用不同的表达方式来实现同一概念也很常见。现有方法直接使用临床注释或初始预处理作为表示模型的输入。但是,要学习良好的嵌入,我们确定了最重要的临床笔记部分。然后,我们将提取的概念从选定部分映射到统一医学语言系统(UMLS)中的标准名称。我们使用与唯一概念相对应的标准短语作为临床模型的输入。我们进行了实验,以测量在公共可用的医疗信息集市(MIMIC-III)数据集的子集中,在医院死亡率预测的任务中,学到的嵌入向量的实用性。根据实验,与其他输入格式相比,基于临床变压器的表示模型通过提取的独特概念的标准名称产生的输入产生了更好的结果。表现最好的模型分别是Biobert,PubMedbert和Umlsbert。
translated by 谷歌翻译
医疗保健自动化的机会可以改善临床医生的吞吐量。一个这样的例子是辅助工具记录诊断代码时,当临床医生写笔记时。我们使用课程学习研究了医学法规预测的自动化,这是机器学习模型的培训策略,可逐渐将学习任务的硬度从易于到困难提高。课程学习的挑战之一是课程的设计 - 即,在逐渐增加难度的任务设计中。我们提出了分层课程学习(HICU),这是一种在输出空间中使用图形结构的算法,以设计用于多标签分类的课程。我们为多标签分类模型创建课程,以预测患者自然语言描述的ICD诊断和程序代码。通过利用ICD代码的层次结构,该层次基于人体的各种器官系统进行诊断代码,我们发现我们的建议课程改善了基于反复,卷积和基于变压器的体系结构的基于神经网络的预测模型的概括。我们的代码可在https://github.com/wren93/hicu-icd上找到。
translated by 谷歌翻译
尽管变压器语言模型(LMS)是信息提取的最新技术,但长文本引入了需要次优的预处理步骤或替代模型体系结构的计算挑战。稀疏注意的LMS可以代表更长的序列,克服性能障碍。但是,目前尚不清楚如何解释这些模型的预测,因为并非所有令牌都在自我发项层中相互参加,而在运行时,长序列对可解释性算法提出了计算挑战,而当运行时取决于文档长度。这些挑战在文档可能很长的医学环境中是严重的,机器学习(ML)模型必须是审核和值得信赖的。我们介绍了一种新颖的蒙版抽样程序(MSP),以识别有助于预测的文本块,将MSP应用于预测医学文本诊断的背景下,并通过两位临床医生的盲目审查来验证我们的方法。我们的方法比以前的最先进的临床信息块高约1.7倍,速度更快100倍,并且可用于生成重要的短语对。 MSP特别适合长LMS,但可以应用于任何文本分类器。我们提供了MSP的一般实施。
translated by 谷歌翻译
我们提出了一种三级等级变压器网络(3级),用于在临床笔记上建模长期依赖性,以患者级预测的目的。该网络配备了三个级别的基于变压器的编码器,以逐步地从单词中学到句子,句子票据,最后给患者注释。单词到句子的第一级直接将预先训练的BERT模型应用为完全可训练的组件。虽然第二和第三级实现了一堆基于变压器的编码器,但在最终患者表示进入临床预测的分类层之前。与传统的BERT模型相比,我们的模型将512个令牌的最大输入长度增加到适合建模大量临床笔记的更长的序列。我们经验检查不同的超参数,以识别给定的计算资源限制的最佳权衡。我们的实验结果对不同预测任务的模拟-III数据集表明,所提出的等级变压器网络优于以前的最先进的模型,包括但不限于BigBird。
translated by 谷歌翻译
尽管电子保健记录(EHR)丰富,但其异质性限制了医疗数据在构建预测模型中的利用。为了应对这一挑战,我们提出了通用医疗预测框架(UNIHPF),该框架不需要医疗领域知识和对多个预测任务的最小预处理。实验结果表明,UNIHPF能够构建可以从不同EHR系统处理任何形式的医疗数据的大规模EHR模型。我们的框架在多源学习任务(包括转移和汇总学习)中大大优于基线模型,同时在单个医疗数据集中接受培训时也会显示出可比的结果。为了凭经验证明我们工作的功效,我们使用各种数据集,模型结构和任务进行了广泛的实验。我们认为,我们的发现可以为对EHR的多源学习提供进一步研究提供有益的见解。
translated by 谷歌翻译
疾病的早​​期诊断可能会改善健康结果,例如较高的存活率和较低的治疗成本。随着电子健康记录中的大量信息(EHR),使用机器学习(ML)方法有很大的潜力来对疾病进展进行建模,以旨在早期预测疾病发作和其他结果。在这项工作中,我们采用了神经odes的最新创新来利用EHR的全部时间信息。我们提出了冰节(将临床嵌入与神经普通微分方程的整合),该体系结构在时间上整合临床代码和神经ODE的嵌入,以学习和预测EHR中的患者轨迹。我们将我们的方法应用于公共可用的模拟III和模拟IV数据集,与最新方法相比,报告了预测结果的改进,特别是针对EHR中经常观察到的临床代码。我们还表明,冰节在预测某些医疗状况(例如急性肾衰竭和肺心脏病)方面更有能力,并且还能够随着时间的推移产生患者的风险轨迹,以进行进一步的预测。
translated by 谷歌翻译
在视觉上丰富的文件(VRD)上的结构化文本理解是文档智能的重要组成部分。由于VRD中的内容和布局的复杂性,结构化文本理解是一项有挑战性的任务。大多数现有的研究将此问题与两个子任务结尾:实体标记和实体链接,这需要整体地了解令牌和段级别的文档的上下文。但是,很少的工作已经关注有效地从不同层次提取结构化数据的解决方案。本文提出了一个名为structext的统一框架,它对于处理两个子任务是灵活的,有效的。具体地,基于变压器,我们引入了一个段令牌对齐的编码器,以处理不同粒度水平的实体标记和实体链接任务。此外,我们设计了一种具有三个自我监督任务的新型预训练策略,以学习更丰富的代表性。 Structext使用现有屏蔽的视觉语言建模任务和新句子长度预测和配对框方向任务,以跨文本,图像和布局结合多模态信息。我们评估我们在分段级别和令牌级别的结构化文本理解的方法,并表明它优于最先进的同行,在Funsd,Srie和Ephoie数据集中具有显着优越的性能。
translated by 谷歌翻译
Automatic International Classification of Diseases (ICD) coding aims to assign multiple ICD codes to a medical note with an average of 3,000+ tokens. This task is challenging due to the high-dimensional space of multi-label assignment (155,000+ ICD code candidates) and the long-tail challenge - Many ICD codes are infrequently assigned yet infrequent ICD codes are important clinically. This study addresses the long-tail challenge by transforming this multi-label classification task into an autoregressive generation task. Specifically, we first introduce a novel pretraining objective to generate free text diagnoses and procedure using the SOAP structure, the medical logic physicians use for note documentation. Second, instead of directly predicting the high dimensional space of ICD codes, our model generates the lower dimension of text descriptions, which then infer ICD codes. Third, we designed a novel prompt template for multi-label classification. We evaluate our Generation with Prompt model with the benchmark of all code assignment (MIMIC-III-full) and few shot ICD code assignment evaluation benchmark (MIMIC-III-few). Experiments on MIMIC-III-few show that our model performs with a marco F1 30.2, which substantially outperforms the previous MIMIC-III-full SOTA model (marco F1 4.3) and the model specifically designed for few/zero shot setting (marco F1 18.7). Finally, we design a novel ensemble learner, a cross attention reranker with prompts, to integrate previous SOTA and our best few-shot coding predictions. Experiments on MIMIC-III-full show that our ensemble learner substantially improves both macro and micro F1, from 10.4 to 14.6 and from 58.2 to 59.1, respectively.
translated by 谷歌翻译
Background: Encouraged by the success of pretrained Transformer models in many natural language processing tasks, their use for International Classification of Diseases (ICD) coding tasks is now actively being explored. In this study, we investigate three types of Transformer-based models, aiming to address the extreme label set and long text classification challenges that are posed by automated ICD coding tasks. Methods: The Transformer-based model PLM-ICD achieved the current state-of-the-art (SOTA) performance on the ICD coding benchmark dataset MIMIC-III. It was chosen as our baseline model to be further optimised. XR-Transformer, the new SOTA model in the general extreme multi-label text classification domain, and XR-LAT, a novel adaptation of the XR-Transformer model, were also trained on the MIMIC-III dataset. XR-LAT is a recursively trained model chain on a predefined hierarchical code tree with label-wise attention, knowledge transferring and dynamic negative sampling mechanisms. Results: Our optimised PLM-ICD model, which was trained with longer total and chunk sequence lengths, significantly outperformed the current SOTA PLM-ICD model, and achieved the highest micro-F1 score of 60.8%. The XR-Transformer model, although SOTA in the general domain, did not perform well across all metrics. The best XR-LAT based model obtained results that were competitive with the current SOTA PLM-ICD model, including improving the macro-AUC by 2.1%. Conclusion: Our optimised PLM-ICD model is the new SOTA model for automated ICD coding on the MIMIC-III dataset, while our novel XR-LAT model performs competitively with the previous SOTA PLM-ICD model.
translated by 谷歌翻译
最近,许多研究表明,通过使用多模式的训练预训练目标扩展BERT体系结构,在各种视觉语言多模式任务(例如图像字幕和视觉问题)上进行了令人印象深刻的表现。在这项工作中,我们探讨了医学领域中的一系列多模式表示任务,专门使用放射学图像和非结构化报告。我们提出了医学视觉语言学习者(MEDVILL),该语言学习者采用基于BERT的建筑与一种新型的多模式注意掩盖方案相结合,以最大程度地提高概括性能,以实现视力语言理解任务(诊断分类,医疗图像报告,医学视觉,医疗视觉效果问答)和视觉生成任务(放射学报告生成)。通过统计和严格评估四个下游任务的拟议模型,该模型具有三个X光摄影图像报告数据集(Mimic-CXR,Open-I和VQA-RAD),我们从经验上凭经验证明了MEDVILL的卓越下游任务,包括各种基准,包括任务 - 特定体系结构。源代码可公开可用:https://github.com/supersupermoon/medvill
translated by 谷歌翻译