Although substantial efforts have been made using graph neural networks (GNNs) for AI-driven drug discovery (AIDD), effective molecular representation learning remains an open challenge, especially in the case of insufficient labeled molecules. Recent studies suggest that big GNN models pre-trained by self-supervised learning on unlabeled datasets enable better transfer performance in downstream molecular property prediction tasks. However, they often require large-scale datasets and considerable computational resources, which is time-consuming, computationally expensive, and environmentally unfriendly. To alleviate these limitations, we propose a novel pre-training model for molecular representation learning, Bi-branch Masked Graph Transformer Autoencoder (BatmanNet). BatmanNet features two tailored and complementary graph autoencoders to reconstruct the missing nodes and edges from a masked molecular graph. To our surprise, BatmanNet discovered that the highly masked proportion (60%) of the atoms and bonds achieved the best performance. We further propose an asymmetric graph-based encoder-decoder architecture for either nodes and edges, where a transformer-based encoder only takes the visible subset of nodes or edges, and a lightweight decoder reconstructs the original molecule from the latent representation and mask tokens. With this simple yet effective asymmetrical design, our BatmanNet can learn efficiently even from a much smaller-scale unlabeled molecular dataset to capture the underlying structural and semantic information, overcoming a major limitation of current deep neural networks for molecular representation learning. For instance, using only 250K unlabelled molecules as pre-training data, our BatmanNet with 2.575M parameters achieves a 0.5% improvement on the average AUC compared with the current state-of-the-art method with 100M parameters pre-trained on 11M molecules.
translated by 谷歌翻译
Many applications of machine learning require a model to make accurate predictions on test examples that are distributionally different from training ones, while task-specific labels are scarce during training. An effective approach to this challenge is to pre-train a model on related tasks where data is abundant, and then fine-tune it on a downstream task of interest. While pre-training has been effective in many language and vision domains, it remains an open question how to effectively use pre-training on graph datasets. In this paper, we develop a new strategy and self-supervised methods for pre-training Graph Neural Networks (GNNs). The key to the success of our strategy is to pre-train an expressive GNN at the level of individual nodes as well as entire graphs so that the GNN can learn useful local and global representations simultaneously. We systematically study pre-training on multiple graph classification datasets. We find that naïve strategies, which pre-train GNNs at the level of either entire graphs or individual nodes, give limited improvement and can even lead to negative transfer on many downstream tasks. In contrast, our strategy avoids negative transfer and improves generalization significantly across downstream tasks, leading up to 9.4% absolute improvements in ROC-AUC over non-pre-trained models and achieving state-of-the-art performance for molecular property prediction and protein function prediction.However, pre-training on graph datasets remains a hard challenge. Several key studies (
translated by 谷歌翻译
自我监督学习(SSL)是一种通过利用数据中固有的监督来学习数据表示的方法。这种学习方法是药物领域的焦点,由于耗时且昂贵的实验,缺乏带注释的数据。使用巨大未标记数据的SSL显示出在分子属性预测方面表现出色的性能,但存在一些问题。 (1)现有的SSL模型是大规模的;在计算资源不足的情况下实现SSL有限制。 (2)在大多数情况下,它们不利用3D结构信息进行分子表示学习。药物的活性与药物分子的结构密切相关。但是,大多数当前模型不使用3D信息或部分使用它。 (3)以前对分子进行对比学习的模型使用置换原子和键的增强。因此,具有不同特征的分子可以在相同的阳性样品中。我们提出了一个新颖的对比学习框架,用于分子属性预测的小规模3D图对比度学习(3DGCL),以解决上述问题。 3DGCL通过不改变药物语义的预训练过程来反映分子的结构来学习分子表示。仅使用1,128个样本用于预训练数据和100万个模型参数,我们在四个回归基准数据集中实现了最先进或可比性的性能。广泛的实验表明,基于化学知识的3D结构信息对于用于财产预测的分子表示学习至关重要。
translated by 谷歌翻译
Models based on machine learning can enable accurate and fast molecular property predictions, which is of interest in drug discovery and material design. Various supervised machine learning models have demonstrated promising performance, but the vast chemical space and the limited availability of property labels make supervised learning challenging. Recently, unsupervised transformer-based language models pretrained on a large unlabelled corpus have produced state-of-the-art results in many downstream natural language processing tasks. Inspired by this development, we present molecular embeddings obtained by training an efficient transformer encoder model, MoLFormer, which uses rotary positional embeddings. This model employs a linear attention mechanism, coupled with highly distributed training, on SMILES sequences of 1.1 billion unlabelled molecules from the PubChem and ZINC datasets. We show that the learned molecular representation outperforms existing baselines, including supervised and self-supervised graph neural networks and language models, on several downstream tasks from ten benchmark datasets. They perform competitively on two others. Further analyses, specifically through the lens of attention, demonstrate that MoLFormer trained on chemical SMILES indeed learns the spatial relationships between atoms within a molecule. These results provide encouraging evidence that large-scale molecular language models can capture sufficient chemical and structural information to predict various distinct molecular properties, including quantum-chemical properties.
translated by 谷歌翻译
学习表达性分子表示对于促进分子特性的准确预测至关重要。尽管图形神经网络(GNNS)在分子表示学习中取得了显着进步,但它们通常面临诸如邻居探索,不足,过度光滑和过度阵列之类的局限性。同样,由于参数数量大,GNN通常具有较高的计算复杂性。通常,当面对相对大尺寸的图形或使用更深的GNN模型体系结构时,这种限制会出现或增加。克服这些问题的一个想法是将分子图简化为小型,丰富且有益的信息,这更有效,更具挑战性的培训GNN。为此,我们提出了一个新颖的分子图粗化框架,名为FUNQG利用函数组,作为分子的有影响力的构件来确定其性质,基于称为商图的图理论概念。通过实验,我们表明所产生的信息图比分子图小得多,因此是训练GNN的良好候选者。我们将FUNQG应用于流行的分子属性预测基准,然后比较所获得的数据集上的GNN体系结构的性能与原始数据集上的几个最先进的基线。通过实验,除了其参数数量和低计算复杂性的急剧减少之外,该方法除了其急剧减少之外,在各种数据集上的表现显着优于先前的基准。因此,FUNQG可以用作解决分子表示学习问题的简单,成本效益且可靠的方法。
translated by 谷歌翻译
Molecular representation learning is crucial for the problem of molecular property prediction, where graph neural networks (GNNs) serve as an effective solution due to their structure modeling capabilities. Since labeled data is often scarce and expensive to obtain, it is a great challenge for GNNs to generalize in the extensive molecular space. Recently, the training paradigm of "pre-train, fine-tune" has been leveraged to improve the generalization capabilities of GNNs. It uses self-supervised information to pre-train the GNN, and then performs fine-tuning to optimize the downstream task with just a few labels. However, pre-training does not always yield statistically significant improvement, especially for self-supervised learning with random structural masking. In fact, the molecular structure is characterized by motif subgraphs, which are frequently occurring and influence molecular properties. To leverage the task-related motifs, we propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT). MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt. The prompt effectively augments the molecular graph with meaningful motifs in the continuous representation space; this provides more structural patterns to aid the downstream classifier in identifying molecular properties. Extensive experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction, with or without a few fine-tuning steps.
translated by 谷歌翻译
Models that accurately predict properties based on chemical structure are valuable tools in drug discovery. However, for many properties, public and private training sets are typically small, and it is difficult for the models to generalize well outside of the training data. Recently, large language models have addressed this problem by using self-supervised pretraining on large unlabeled datasets, followed by fine-tuning on smaller, labeled datasets. In this paper, we report MolE, a molecular foundation model that adapts the DeBERTa architecture to be used on molecular graphs together with a two-step pretraining strategy. The first step of pretraining is a self-supervised approach focused on learning chemical structures, and the second step is a massive multi-task approach to learn biological information. We show that fine-tuning pretrained MolE achieves state-of-the-art results on 9 of the 22 ADMET tasks included in the Therapeutic Data Commons.
translated by 谷歌翻译
变压器架构已成为许多域中的主导选择,例如自然语言处理和计算机视觉。然而,与主流GNN变体相比,它对图形水平预测的流行排行榜没有竞争表现。因此,它仍然是一个谜,变形金机如何对图形表示学习表现良好。在本文中,我们通过提出了基于标准变压器架构构建的Gragemer来解决这一神秘性,并且可以在广泛的图形表示学习任务中获得优异的结果,特别是在最近的OGB大规模挑战上。我们在图中利用变压器的关键洞察是有效地将图形的结构信息有效地编码到模型中。为此,我们提出了几种简单但有效的结构编码方法,以帮助Gramemormer更好的模型图形结构数据。此外,我们在数学上表征了Gramemormer的表现力,并展示了我们编码图形结构信息的方式,许多流行的GNN变体都可以被涵盖为GrameRormer的特殊情况。
translated by 谷歌翻译
自我监督的学习逐渐被出现为一种强大的图形表示学习技术。然而,在图表数据上进行可转换,概括和强大的表示学习仍然是对预训练图形神经网络的挑战。在本文中,我们提出了一种简单有效的自我监督的自我监督的预训练策略,命名为成对半图歧视(PHD),明确地预先在图形级别进行了图形神经网络。 PHD被设计为简单的二进制分类任务,以辨别两个半图是否来自同一源。实验表明,博士学位是一种有效的预训练策略,与最先进的策略相比,在13图分类任务上提供了可比或优越的性能,并在与节点级策略结合时实现了显着的改进。此外,所学习代表的可视化透露,博士策略确实赋予了模型来学习像分子支架等图形级知识。这些结果已将博士学位作为图形级别代表学习中的强大有效的自我监督的学习策略。
translated by 谷歌翻译
使用图神经网络(GNN)提取分子的信息表示,对于AI驱动的药物发现至关重要。最近,图形研究界一直在试图复制自然语言处理预处理的成功,并获得了一些成功。但是,我们发现在许多情况下,自我监督预审计对分子数据的益处可以忽略不计。我们对GNN预处理的关键组成部分进行了彻底的消融研究,包括预处理目标,数据拆分方法,输入特征,预处理数据集量表和GNN体系结构,以决定下游任务的准确性。我们的第一个重要发现是,在许多情况下,自我监督的图表预处理没有统计学上的显着优势。其次,尽管可以通过额外的监督预处理可以观察到改进,但通过更丰富或更平衡的数据拆分,改进可能会减少。第三,实验性超参数对下游任务的准确性具有更大的影响,而不是训练训练的任务。我们假设对分子进行预训练的复杂性不足,从而导致下游任务的可转移知识较低。
translated by 谷歌翻译
分子表示学习有助于多个下游任务,例如分子性质预测和药物设计。为了适当地代表分子,图形对比学习是一个有前途的范式,因为它利用自我监督信号并没有人类注释要求。但是,先前的作品未能将基本域名知识纳入图表语义,因此忽略了具有共同属性的原子之间的相关性,但不通过键连接连接。为了解决这些问题,我们构建化学元素知识图(KG),总结元素之间的微观关联,并提出了一种用于分子代表学习的新颖知识增强的对比学习(KCL)框架。 KCL框架由三个模块组成。第一个模块,知识引导的图形增强,基于化学元素kg增强原始分子图。第二模块,知识意识的图形表示,利用用于原始分子图的公共曲线图编码器和通过神经网络(KMPNN)的知识感知消息来提取分子表示来编码增强分子图中的复杂信息。最终模块是一种对比目标,在那里我们在分子图的这两个视图之间最大化协议。广泛的实验表明,KCL获得了八个分子数据集上的最先进基线的优异性能。可视化实验适当地解释了在增强分子图中从原子和属性中了解的KCL。我们的代码和数据可用于补充材料。
translated by 谷歌翻译
分子性质预测在化学中至关重要,特别是对于药物发现应用。但是,可用的分子属性数据通常受到限制,鼓励信息从相关数据传输。转移学习对计算机视觉和自然语言处理信号等领域产生了巨大影响,以实现其在分子财产预测中的潜力。我们提出了使用反应数据进行分子表示学习的预训练程序,并将其用于预训练微笑变压器。我们对从物理化学,生物物理学和生理学中的分子的12个分子性质预测任务进行微调和评估预先训练的模型,并与非预先训练的基线模型相比,对12个任务中的5个任务显示出统计学上的显着积极作用。
translated by 谷歌翻译
我们介绍了一种新颖的屏蔽图AutoEncoder(MGAE)框架,以在图形结构数据上执行有效的学习。从自我监督学习中欣识见,我们随机掩盖了大部分边缘,并在训练期间尝试重建这些缺失的边缘。 Mgae有两个核心设计。首先,我们发现掩蔽了输入图结构的高比率,例如70 \%$,产生一个非凡和有意义的自我监督任务,使下游应用程序受益。其次,我们使用图形神经网络(GNN)作为编码器,以在部分掩蔽的图表上执行消息传播。为了重建大量掩模边缘,提出了一种定制的互相关解码器。它可以捕获多粒度的锚边的头部和尾部节点之间的互相关。耦合这两种设计使MGAE能够有效且有效地培训。在多个开放数据集(Planetoid和OGB基准测试)上进行了广泛的实验,证明MGAE通常比链接预测和节点分类更好地表现优于最先进的无监督竞争对手。
translated by 谷歌翻译
图表自学学习(GSSL)铺平了无需专家注释的学习图嵌入的方式,这对分子图特别有影响,因为可能的分子数量很大,并且标签昂贵。但是,通过设计,GSSL方法没有经过训练,可以在一个下游任务上表现良好,而是旨在将其转移到许多人方面,从而使评估不那么直接。作为获得具有多种多样且可解释属性的分子图嵌入曲线的一步,我们引入了分子图表示评估(Molgrapheval),这是一组探针任务,分为(i)拓扑 - ,(ii)子结构 - 和(iii)和(iii)嵌入空间属性。通过对现有下游数据集和Molgrapheval上的现有GSSL方法进行基准测试,我们发现单独从现有数据集中得出的结论与更细粒度的探测之间存在令人惊讶的差异,这表明当前的评估协议没有提供整个图片。我们的模块化,自动化的端到端GSSL管道代码将在接受后发布,包括标准化的图形加载,实验管理和嵌入评估。
translated by 谷歌翻译
图对比度学习已被证明是图形神经网络(GNN)预训练的有效任务。但是,一个关键问题可能会严重阻碍现有作品中的代表权:当前方法创建的积极实例通常会错过图表的关键信息,甚至会错过非法实例(例如分子生成中的非化学意识图)。为了解决此问题,我们建议直接从训练集中的现有图中选择正图实例,该实例最终保持与目标图的合法性和相似性。我们的选择基于某些特定于域的成对相似性测量以及从层次图编码图中的相似性关系的采样。此外,我们开发了一种自适应节点级预训练方法,以动态掩盖节点在图中均匀分布。我们对来自各个域的$ 13 $图形分类和节点分类基准数据集进行了广泛的实验。结果表明,通过我们的策略预先培训的GNN模型可以胜过那些训练有素的从划痕模型以及通过现有方法获得的变体。
translated by 谷歌翻译
分子特性预测的深度学习模型的研究主要集中在更好的图形神经网络(GNN)架构的发展。虽然新的GNN变体继续提高性能,但它们的修改共享一个常见的主题,即减轻其基本图形到图形的内在内在的问题。在这项工作中,我们研究了这些限制,并提出了一种新的分子表现,可以完全绕过GNN的需求。与变压器模型配对时,我们的固定尺寸随机表示超出了最先进的GNN模型的性能,并提供了一种可扩展性的路径。
translated by 谷歌翻译
近年来,自我监督学习(SSL)已广泛探索。特别是,生成的SSL在自然语言处理和其他AI领域(例如BERT和GPT的广泛采用)中获得了新的成功。尽管如此,对比度学习 - 严重依赖结构数据的增强和复杂的培训策略,这是图SSL的主要方法,而迄今为止,生成SSL在图形上的进度(尤其是GAES)尚未达到潜在的潜力。正如其他领域所承诺的。在本文中,我们确定并检查对GAE的发展产生负面影响的问题,包括其重建目标,训练鲁棒性和错误指标。我们提出了一个蒙版的图形自动编码器Graphmae,该图可以减轻这些问题,以预处理生成性自我监督图。我们建议没有重建图形结构,而是提议通过掩盖策略和缩放余弦误差将重点放在特征重建上,从而使GraphMae的强大训练受益。我们在21个公共数据集上进行了大量实验,以实现三个不同的图形学习任务。结果表明,Graphmae-A简单的图形自动编码器具有仔细的设计-CAN始终在对比度和生成性最新基准相比,始终产生优于性的表现。这项研究提供了对图自动编码器的理解,并证明了在图上的生成自我监督预训练的潜力。
translated by 谷歌翻译
分子表示学习(MRL)是建立机器学习与化学科学之间联系的关键步骤。特别是,它将分子编码为保留分子结构和特征的数值向量,在其上可以执行下游任务(例如,属性预测)。最近,MRL取得了相当大的进步,尤其是在基于深的分子图学习方法中。在这项调查中,我们系统地回顾了这些基于图的分子表示技术。具体而言,我们首先介绍2D和3D图分子数据集的数据和功能。然后,我们总结了专门为MRL设计的方法,并将其分为四种策略。此外,我们讨论了MRL支持的一些典型化学应用。为了促进该快速发展领域的研究,我们还列出了论文中的基准和常用数据集。最后,我们分享我们对未来研究方向的想法。
translated by 谷歌翻译
分子特性预测是与关键现实影响的深度学习的增长最快的应用之一。包括3D分子结构作为学习模型的输入可以提高它们对许多分子任务的性能。但是,此信息是不可行的,可以以几个现实世界应用程序所需的规模计算。我们建议预先训练模型,以推理仅给予其仅为2D分子图的分子的几何形状。使用来自自我监督学习的方法,我们最大化3D汇总向量和图形神经网络(GNN)的表示之间的相互信息,使得它们包含潜在的3D信息。在具有未知几何形状的分子上进行微调期间,GNN仍然产生隐式3D信息,并可以使用它来改善下游任务。我们表明3D预训练为广泛的性质提供了显着的改进,例如八个量子力学性能的22%的平均MAE。此外,可以在不同分子空间中的数据集之间有效地传送所学习的表示。
translated by 谷歌翻译
分子特性预测在药物发现中起着基本作用,以鉴定具有目标性质的候选分子。然而,分子特性预测基本上是几次射门问题,这使得难以使用普通机器学习模型。在本文中,我们提出了一个属性感知的关系网络(PAR)来处理此问题。与现有的作品相比,我们利用了不同分子特性的相关子结构和关系的事实。我们首先介绍一个属性感知的嵌入功能,将通用分子嵌入的功能转换为与目标属性相关的子结构感知空间。此外,我们设计了一个自适应关系图学习模块,共同估计了分子关系图和优化分子嵌入W.R.T.目标性质,使得有限标签可以有效地在类似的分子之间繁殖。我们采用元学习策略,其中参数在任务中选择性地更新,以便单独模拟通用和属性感知的知识。基准分子特性预测数据集的广泛实验表明,始终如一地优于现有方法,并可以正确获得性能感知分子嵌入和模型分子关系图。
translated by 谷歌翻译