谵妄是急性急性发病脑功能障碍,在紧急情况下,与较高的死亡率有关。由于其演示和风险因素难以检测和监测,这取决于患者的潜在病情。在我们的研究中,我们旨在识别谵妄人口中的亚型,并建立使用医疗信息MART进行密集护理IV(MIMIC-IV)数据来检测谵妄的亚组特定的预测模型。我们表明谵妄存在于谵妄中。对于特定于组的预测模型,还观察到特征重要性的差异。我们的工作可以重新校准每个谵妄亚组的现有谵妄预测模型,并提高ICU或急诊部门患者的谵妄检测和监测的精度。
translated by 谷歌翻译
对世界各地的急诊部门(ED)服务的需求不断增长,特别是在Covid-19大流行下。风险三环在优先考虑最需要它们的患者的有限医疗资源方面发挥着至关重要的作用。最近,普遍使用电子健康记录(EHR)已经产生了大量的存储数据,伴随着开发可改善紧急护理的预测模型的巨大机会。然而,没有基于大型公共EHR的广泛接受的ED基准,这是新的研究人员可以轻松访问的基准。填补这种差距的成功可以使研究人员更快,方便地开始研究,而无需详细数据预处理,并促进不同研究和方法之间的比较。在本文中,基于医疗信息MART为重症监护IV急诊部门(MIMIC-IV-ED)数据库,我们提出了一款公共ED基准套件,并获得了从2011年到2019年的50万ED访问的基准数据集。三个ed已经介绍了基于预测任务(住院,关键结果和72小时ED Revisit),其中实施了各种流行的方法,从机器学习方法到临床评分系统进行了实施。他们的性能结果评估并进行了比较。我们的代码是开源,因此任何具有访问模仿-IV-ED的人都可以遵循相同的数据处理步骤,构建基准,并重现实验。本研究提供了洞察力,建议,以及未来研究人员的协议,以处理原始数据并快速建立紧急护理模型。
translated by 谷歌翻译
肥胖是一个重大的健康问题,增加了各种主要慢性病的风险,如糖尿病,癌症和中风。虽然通过横断面BMI录音识别的肥胖作用已经过分研究,但BMI轨迹的作用远远不大。在这项研究中,我们利用从大型和地理位置的EHR数据集中提取的BMI轨迹捕获大约200万个人的健康状况为期六年的健康状况。我们根据BMI轨迹定义九个新的可解释和基于证据的变量,以使用K-Means聚类方法将患者聚类为子组。我们在人口统计学,社会经济和生理测量变量方面彻底审查了每个集群特征,以指定簇中患者的不同性质。在我们的实验中,已被重新建立肥胖,高血压,阿尔茨海默和痴呆症的肥胖,高血压,阿尔茨海默氏症和痴呆症的直接关系,并且已经发现有几种慢性疾病的特异性特征的不同簇符合或与现有的知识体系互补。
translated by 谷歌翻译
医院住宿时间(LOS)是最重要的医疗保健度量之一,反映了医院的服务质量,有助于改善医院调度和管理。LOS预测有助于成本管理,因为留在医院的患者通常在资源受到严重限制的情况下这样做。在这项研究中,我们通过机器学习和统计方法审查了LOS预测的论文。我们的文献综述考虑了对卒中患者LOS预测的研究研究。一些受访的研究表明,作者达成了相应的结论。例如,患者的年龄被认为是一些研究中卒中患者LOS的重要预测因子,而其他研究则认为年龄不是一个重要因素。因此,在该领域需要额外的研究以进一步了解卒中患者LOS的预测因子。
translated by 谷歌翻译
背景:几项研究突出了考虑急性冠状动脉综合征(ACS)诊断和治疗性差异的重要性。然而,几乎已经研究了ACS子群中的性别特异性风险标志物。本研究旨在探索机器学习(ML)模型,以识别从电子健康记录(EHR)的公共数据库中的ACS子群体中的妇女和男性的住院死亡率标志。方法:从医疗信息MART中提取1,299名患有的ST升高的心肌梗死(Stemi)和2,820名非St-Expation心肌梗死患者进行重症监护(MIMIC)-III数据库。我们培训和验证了死亡率预测模型,并使用了可解释性技术来识别每个子群体的性别特异性标记。结果:基于极端梯度升压的模型(XGBoost)实现了最高性能:STEMI和AUC = 0.94(95 \%CI:0.80- 0.90)为nstemi。对于STEMI,女性的顶部标记是慢性肾功能衰竭,心率高,年龄超过70岁。对于男性来说,顶部标记是急性肾功能衰竭,高肌钙蛋白T水平,年龄超过75岁。然而,对于NStemi,女性的顶部标记较低,肌钙蛋白水平低,尿素水平高,80多年。对于男性来说,顶部标记是高心率,肌酐水平,年龄超过70岁。结论:我们的结果表明,通过解释ehrs培训的ML死亡率模型,通过解释ML死亡率模型显示不同ACS子群的可能的显着和相干的性别特异性风险标记。在妇女与男性的确定风险标志中观察到差异,突出了考虑性别特异性标记在实施更适当的治疗策略和更好的临床结果方面的重要性。
translated by 谷歌翻译
风险评分广泛用于临床决策,通常由逻辑回归模型产生。基于机器学习的方法可以很好地识别重要的预测因子,但这种“黑匣子”变量选择限制解释性,并且从单个模型评估的可变重要性可以偏置。我们提出了一种强大而可解释的可解释的可解释选择方法,使用最近开发的福利可变重要性云(福利维奇)占模型的可变性。我们的方法评估和可视化了深入推理和透明变量选择的总变量贡献,并过滤出非重要贡献者来简化模型构建步骤。我们从可变贡献中获得了一个集合变量排名,这很容易与自动化和模块化的风险分数发生器,自动摩托,以方便的实现。在对早期死亡或意外再入住的研究中,福糖选定了6个候选变量中的6个,以创建一个良好的性能,从机器学习的排名到一个16变量模型具有类似的性能。
translated by 谷歌翻译
源于机器学习和优化的临床决策支持工具可以为医疗保健提供者提供显着的价值,包括通过更好地管理重症监护单位。特别是,重要的是,患者排放任务在降低患者的住宿时间(以及相关住院费用)和放弃决策后的入院甚至死亡的风险之间存在对细微的折衷。这项工作介绍了一个端到端的一般框架,用于捕获这种权衡,以推荐患者电子健康记录的最佳放电计时决策。数据驱动方法用于导出捕获患者的生理条件的解析,离散状态空间表示。基于该模型和给定的成本函数,在数值上制定并解决了无限的地平线折扣明马尔科夫决策过程,以计算最佳的排放政策,其价值使用违规评估策略进行评估。进行广泛的数值实验以使用现实生活重症监护单元患者数据来验证所提出的框架。
translated by 谷歌翻译
超重和肥胖仍然是一个主要的全球性公共健康问题,并确定增加未来体重增加风险的个性化模式在预防肥胖症和许多与肥胖症相关的次螯症方面具有至关重要的作用。在这项工作中,我们使用规则发现方法来研究这个问题,通过呈现提供真正的解释性和同时优化所识别模式的准确性(经常正确)的准确性(适用于许多样本)的方法来研究这个问题。具体而言,我们扩展了一个已建立的子组 - 发现方法以生成类型X-> Y的所需规则,并显示如何从X侧提取最高特征,作为Y的最佳预测因子。在我们的肥胖问题中,X是指来自非常大的和多站点EHR数据的提取功能,y表示大量的重量。使用我们的方法,我们还广泛地比较了由个人性别,年龄,种族,保险类型,邻里类型和收入水平决定的22层模式中的模式中的差异和不平等。通过广泛的实验,我们对未来危险体重增加的预测变量显示出新的和互补结果。
translated by 谷歌翻译
基于有效干预措施的早期疾病检测和预防方法正在引起人们的注意。机器学习技术通过捕获多元数据中的个体差异来实现精确的疾病预测。精确医学的进展表明,在个人层面的健康数据中存在实质性异质性,并且复杂的健康因素与慢性疾病的发展有关。但是,由于多种生物标志物之间的复杂关系,确定跨疾病发作过程中的个体生理状态变化仍然是一个挑战。在这里,我们介绍了健康疾病阶段图(HDPD),它通过可视化在疾病进展过程早期波动的多种生物标志物的边界值来代表个人健康状态。在HDPD中,未来的发作预测是通过扰动多个生物标志物值的情况来表示的,同时考虑变量之间的依赖性。我们从3,238个个体的纵向健康检查队列中构建了11种非传染性疾病(NCD)的HDPD,其中包括3,215个测量项目和遗传数据。 HDPD中非发病区域的生物标志物值的改善显着阻止了11个NCD中的7个未来的疾病发作。我们的结果表明,HDPD可以在发作过程中代表单个生理状态,并用作预防疾病的干预目标。
translated by 谷歌翻译
最近应用于从密集护理单位收集的时间序列的机器学习方法的成功暴露了缺乏标准化的机器学习基准,用于开发和比较这些方法。虽然原始数据集(例如MIMIC-IV或EICU)可以在物理体上自由访问,但是选择任务和预处理的选择通常是针对每个出版物的ad-hoc,限制出版物的可比性。在这项工作中,我们的目标是通过提供覆盖大型ICU相关任务的基准来改善这种情况。使用HirID数据集,我们定义与临床医生合作开发的多个临床相关任务。此外,我们提供可重复的端到端管道,以构建数据和标签。最后,我们提供了对当前最先进的序列建模方法的深入分析,突出了这种类型数据的深度学习方法的一些限制。通过这款基准,我们希望为研究界提供合理比较的可能性。
translated by 谷歌翻译
严重冠状病毒疾病19(Covid-19)的患者通常需要补充氧作为必要的治疗方法。我们开发了一种基于深度加强学习(RL)的机器学习算法,用于持续管理缺氧率为重症监护下的关键病患者,这可以识别最佳的个性化氧气流速,具有强大的潜力,以降低相对于死亡率目前的临床实践。基本上,我们为Covid-19患者的氧气流动轨迹建模,并作为马尔可夫决策过程。基于个体患者特征和健康状况,基于加强学习的氧气控制政策,实时推荐氧气流速降低死亡率。我们通过使用从纽约大学Langone Health的Covid-19的叙述队员使用纽约大学Langone Healthation Mearchatory Maculation Mearchatory Chare,从2020年4月20日至1月2021年使用电子健康记录,通过交叉验证评估了拟议方法的表现。算法低于护理标准的2.57%(95%CI:2.08-3.06)减少(P <0.001)在我们的算法下的护理标准下的7.94%,平均推荐的氧气流量为1.28 L /分钟(95%CI:1.14-1.42)低于实际递送给患者的速率。因此,RL算法可能导致更好的重症监护治疗,可以降低死亡率,同时节省氧气稀缺资源。它可以减少氧气短缺问题,在Covid-19大流行期间改善公共卫生。
translated by 谷歌翻译
细菌感染负责全球高死亡率。感染潜在的抗菌素耐药性,多方面的患者的临床状况会阻碍正确选择抗生素治疗。随机临床试验提供了平均治疗效果估计值,但对于治疗选择的风险分层和优化,即个性化治疗效果(ITE)并不理想。在这里,我们利用了从美国南部学术诊所收集的大规模电子健康记录数据,模仿临床试验,即“目标试验”,并为诊断患有急性细菌的患者开发了死亡率预测和ITE估计的机器学习模型皮肤和皮肤结构感染(ABSSI)是由于金黄色葡萄球菌(MRSA)引起的。 ABSSI-MRSA是一个充满挑战的疾病,治疗选择减少 - 万古霉素是首选的选择,但它具有不可忽略的副作用。首先,我们使用倾向评分匹配来模仿试验并创建随机治疗(万古霉素与其他抗生素)数据集。接下来,我们使用此数据来训练各种机器学习方法(包括增强/Lasso Logistic回归,支持向量机和随机森林),并通过引导验证选择接收器特征(AUC)下的面积最佳模型。最后,我们使用这些模型来计算ITE并通过改变治疗的变化来避免死亡。排出外测试表明,SVM和RF是最准确的,AUC分别为81%和78%,但BLR/Lasso不远(76%)。通过使用BLR/Lasso计算反事实,万古霉素增加了死亡的风险,但显示出很大的变化(优势比1.2,95%范围0.4-3.8),对结果概率的贡献是适度的。取而代之的是,RF在ITE中表现出更大的变化,表明更复杂的治疗异质性。
translated by 谷歌翻译
影响重症患者护理的许多基本问题会带来类似的分析挑战:医生无法轻易估计处于危险的医疗状况或治疗的影响,因为医疗状况和药物的因果影响是纠缠的。他们也无法轻易进行研究:没有足够的高质量数据来进行高维观察性因果推断,并且通常无法在道德上进行RCT。但是,机械知识可获得,包括如何吸收人体药物,并且这些知识与有限数据的结合可能就足够了 - 如果我们知道如何结合它们。在这项工作中,我们提出了一个框架,用于在这些复杂条件下对重症患者的因果影响估算:随着时间的流逝,药物与观察之间的相互作用,不大的患者数据集以及可以代替缺乏数据的机械知识。我们将此框架应用于影响重症患者的极其重要的问题,即癫痫发作和大脑中其他潜在有害的电气事件的影响(称为癫痫样活动 - EA)对结局。鉴于涉及的高赌注和数据中的高噪声,可解释性对于解决此类复杂问题的故障排除至关重要。我们匹配的小组的解释性使神经科医生可以执行图表审查,以验证我们的因果分析的质量。例如,我们的工作表明,患者经历了高水平的癫痫发作般的活动(75%的EA负担),并且未经治疗的六个小时的窗口未受治疗,平均而言,这种不良后果的机会增加了16.7%。作为严重的大脑损伤,终生残疾或死亡。我们发现患有轻度但长期EA的患者(平均EA负担> = 50%)患有不良结果的风险增加了11.2%。
translated by 谷歌翻译
医学中的机器学习利用了财富的医疗保健数据来提取知识,促进临床决策,最终改善护理。然而,在缺乏人口统计分集的数据集上培训的ML模型可以在适用于不足的人群时产生次优绩效(例如少数民族,社会经济地位较低),因此延续了健康差异。在这项研究中,我们评估了四种型分类,以预测高氯血症 - 一种经常由ICU人口中的侵袭性流体给药的条件 - 并将其在种族,性别和保险亚组中进行比较。我们观察到,除了基于实验室的患者的模型性能之外,还要添加社会决定因素特征。 40个模型 - 亚组中的40分,亚组测试产生了显着不同的AUC分数,提示在将ML模型应用于社会决定簇子组时的差异。我们敦促未来的研究人员设计主动调整潜在偏见的模型,并包括他们研究中的子组报告。
translated by 谷歌翻译
Although prediction models for delirium, a commonly occurring condition during general hospitalization or post-surgery, have not gained huge popularity, their algorithmic bias evaluation is crucial due to the existing association between social determinants of health and delirium risk. In this context, using MIMIC-III and another academic hospital dataset, we present some initial experimental evidence showing how sociodemographic features such as sex and race can impact the model performance across subgroups. With this work, our intent is to initiate a discussion about the intersectionality effects of old age, race and socioeconomic factors on the early-stage detection and prevention of delirium using ML.
translated by 谷歌翻译
败血症是一种威胁生命的患有器官功能障碍的疾病,是全球死亡和重症疾病的主要原因。急诊科分类过程中败血症的准确检测将允许尽早开始实验室分析,抗生素给药和其他败血症治疗方案。这项研究的目的是确定是否可以将EHR数据与最新的机器学习算法(Kate Sepsis)和临床自然语言处理一起提取和合成,以产生准确的脓毒症模型,并将Kate Sepsis与现有的败血症筛查方案进行比较爵士和QSOFA。使用来自16家参与医院的分类数据的患者遇到的患者遭遇开发了机器学习模型(Kate Sepsis)。凯特败血症,SIRS,标准筛查(具有感染源的SIRS)和QSOFA在三个设置中进行了测试。队列A是对单个站点1的医疗记录的回顾性分析。同类B是对位点1的前瞻性分析1.同伴C是对站点1的回顾性分析,并有15个地点。在所有队列中,凯特败血症的AUC为0.94-0.963,TPR为73-74.87%和3.76-7.17%FPR。标准筛选显示AUC为0.682-0.726,TPR为39.39-51.19%和2.9-6.02%FPR。 QSOFA协议的AUC为0.544-0.56,TPR为10.52-13.18%和1.22-1.68%FPR。对于严重的败血症,在所有队列中,凯特败血症的AUC为0.935-0.972,TPR为70-82.26%和4.64-8.62%FPR。对于败血性休克,在所有队列中,凯特败血症的AUC为0.96-0.981,TPR为85.71-89.66%和4.85-8.8%FPR。 SIRS,标准筛选和QSOFA表现出严重败血症和败血性休克检测的低AUC和TPR。凯特败血症在分类中提供的败血症检测性能比常用的筛查方案更好。
translated by 谷歌翻译
大型和深度电子医疗保健记录(EHR)数据集的可用性有可能更好地了解现实世界中的患者旅行,并鉴定出新的患者亚组。基于ML的EHR数据集合主要是工具驱动的,即基于可用或新开发的方法的构建。但是,这些方法,它们的输入要求以及最重要的是,通常难以解释产量,尤其是没有深入的数据科学或统计培训。这危害了需要进行可行且具有临床意义的解释的最后一步。这项研究研究了使用大型EHR数据集和多种聚类方法进行临床研究的方法进行大规模进行患者分层分析的方法。我们已经开发了几种工具来促进无监督的患者分层结果的临床评估和解释,即模式筛查,元聚类,替代建模和策展。这些工具可以在分析中的不同阶段使用。与标准分析方法相比,我们证明了凝结结果并优化分析时间的能力。在元聚类的情况下,我们证明了患者簇的数量可以从72减少到3。在另一个分层的结果中,通过使用替代模型,我们可以迅速确定如果有血液钠测量值可用,则可以对心力衰竭患者进行分层。由于这是对所有心力衰竭患者进行的常规测量,因此表明数据偏差。通过使用进一步的队列和特征策展,可以去除这些患者和其他无关的特征以提高临床意义。这些示例显示了拟议方法的有效性,我们希望鼓励在该领域的进一步研究。
translated by 谷歌翻译
Real-time individual endpoint prediction has always been a challenging task but of great clinic utility for both patients and healthcare providers. With 6,879 chronic kidney disease stage 4 (CKD4) patients as a use case, we explored the feasibility and performance of gated recurrent units with decay that models Weibull probability density function (GRU-D-Weibull) as a semi-parametric longitudinal model for real-time individual endpoint prediction. GRU-D-Weibull has a maximum C-index of 0.77 at 4.3 years of follow-up, compared to 0.68 achieved by competing models. The L1-loss of GRU-D-Weibull is ~66% of XGB(AFT), ~60% of MTLR, and ~30% of AFT model at CKD4 index date. The average absolute L1-loss of GRU-D-Weibull is around one year, with a minimum of 40% Parkes serious error after index date. GRU-D-Weibull is not calibrated and significantly underestimates true survival probability. Feature importance tests indicate blood pressure becomes increasingly important during follow-up, while eGFR and blood albumin are less important. Most continuous features have non-linear/parabola impact on predicted survival time, and the results are generally consistent with existing knowledge. GRU-D-Weibull as a semi-parametric temporal model shows advantages in built-in parameterization of missing, native support for asynchronously arrived measurement, capability of output both probability and point estimates at arbitrary time point for arbitrary prediction horizon, improved discrimination and point estimate accuracy after incorporating newly arrived data. Further research on its performance with more comprehensive input features, in-process or post-process calibration are warranted to benefit CKD4 or alike terminally-ill patients.
translated by 谷歌翻译
自2020年2月以来,世界一直在与Covid-19疾病进行激烈的斗争,随着疾病变成大流行,卫生系统受到悲惨的压力。这项研究的目的是使用对LogNNET储层神经网络的向后特征消除算法获得COVID-19的诊断和预后中最有效的常规血值(RBV)。该研究中的第一个数据集由5296例患者组成,具有相同数量的阴性和阳性COVID-19。 Lognnet模型在疾病诊断中的准确率为99.5%,其特征的精度为99.17%,只有平均红细胞血红蛋白浓度,平均性肌张力性血红蛋白和激活的部分凝血酶蛋白时间。第二个数据集由总共3899例COVID-19诊断为医院接受治疗的患者,其中203名患者是严重的患者,3696例患者是温和的患者。该模型以48个特征确定疾病预后的准确率达到94.4%,而仅红细胞沉降率,中性粒细胞计数和C反应性蛋白质特征,精度为82.7%。我们的方法将减少卫生部门的负压力,并帮助医生使用关键特征来了解Covid-19的发病机理。该方法有望在物联网中创建移动健康监控系统。
translated by 谷歌翻译
高流量鼻腔插管(HFNC)为批判性儿童提供了非侵入性呼吸支持,这些儿童可能比其他非侵入性(NIV)技术更容易耐受。及时预测HFNC故障可以提供增加呼吸支持的指示。这项工作开发并比较了机器学习模型来预测HFNC故障。从2010年1月到2月20日至2月的患者EMR进行了患者EMR进行了回顾性研究。培训了长期内记忆(LSTM)模型,以产生连续预测HFNC故障。在HFNC启动后的各个时间使用接收器操作曲线(AUROC)下的区域评估性能。还评估了HFNC启动后2小时后预测的敏感性,特异性,正面和消极预测值(PPV,NPV)。这些指标也以主要呼吸诊断的群组计算。 834 HFNC试验[455培训,173次验证,206检验]符合纳入标准,其中175 [103,30,42](21.0%)升级至NIV或插管。具有转移学习的LSTM模型通常比LR模型更好地执行,最佳LSTM模型在启动后2小时实现0.78,VS 0.66的AUTOC。使用EMR数据培训的机器学习模型能够在发起24小时内识别出现在HFNC中失败的风险的风险。 LSTM模型结合了转移学习,输入数据持久性和合奏显示的性能提高了LR和标准LSTM模型。
translated by 谷歌翻译