背景:几项研究突出了考虑急性冠状动脉综合征(ACS)诊断和治疗性差异的重要性。然而,几乎已经研究了ACS子群中的性别特异性风险标志物。本研究旨在探索机器学习(ML)模型,以识别从电子健康记录(EHR)的公共数据库中的ACS子群体中的妇女和男性的住院死亡率标志。方法:从医疗信息MART中提取1,299名患有的ST升高的心肌梗死(Stemi)和2,820名非St-Expation心肌梗死患者进行重症监护(MIMIC)-III数据库。我们培训和验证了死亡率预测模型,并使用了可解释性技术来识别每个子群体的性别特异性标记。结果:基于极端梯度升压的模型(XGBoost)实现了最高性能:STEMI和AUC = 0.94(95 \%CI:0.80- 0.90)为nstemi。对于STEMI,女性的顶部标记是慢性肾功能衰竭,心率高,年龄超过70岁。对于男性来说,顶部标记是急性肾功能衰竭,高肌钙蛋白T水平,年龄超过75岁。然而,对于NStemi,女性的顶部标记较低,肌钙蛋白水平低,尿素水平高,80多年。对于男性来说,顶部标记是高心率,肌酐水平,年龄超过70岁。结论:我们的结果表明,通过解释ehrs培训的ML死亡率模型,通过解释ML死亡率模型显示不同ACS子群的可能的显着和相干的性别特异性风险标记。在妇女与男性的确定风险标志中观察到差异,突出了考虑性别特异性标记在实施更适当的治疗策略和更好的临床结果方面的重要性。
translated by 谷歌翻译
目的:临床票据含有其他地方未存在的信息,包括药物反应和症状,所有这些都在预测急性护理患者的关键结果时非常重要。我们提出了从临床笔记中的表型作为一种捕获基本信息的方法的自动注释,这与通常使用生命体征和实验室测试结果的互补性,以预测重症监护单元(ICU)中的结果。方法:我们开发一种新颖的表型注释模型,用于注释患者的表型特征,然后用作预测模型的输入特征,以预测ICU患者结果。我们展示并验证了我们的方法对三个ICU预测任务进行实验,包括使用MIMIC-III数据集的医院死亡率,生理失效和超过24,000名患者的逗留时间。结果:掺入表型信息的预测模型实现0.845(AUC-ROC),以预测医院死亡率,0.839(AUC-ROC)的生理失代偿和0.430(Kappa),所有这些都始终胜过基线模型利用只有生命的迹象和实验室测试结果。此外,我们进行了彻底的解释性研究,表明表型在患者和队列水平方面提供了有价值的见解。结论:该方法表明表型信息是传统上使用生命体征和实验室测试结果的补充,改善了ICU中的结果的重要预测。
translated by 谷歌翻译
口服食物挑战(OFC)对于准确诊断患者的食物过敏至关重要。但是,患者不愿接受OFC,对于那些这样做的患者,在农村/社区医疗保健环境中,对过敏症患者的使用率有限。通过机器学习方法对OFC结果的预测可以促进在家中食品过敏原的删除,在OFC中改善患者和医师的舒适度,并通过最大程度地减少执行的OFC的数量来节省医疗资源。临床数据是从共同接受1,284个OFC的1,12例患者那里收集的,包括临床因素,包括血清特异性IgE,总IgE,皮肤刺测试(SPTS),症状,性别和年龄。使用这些临床特征,构建了机器学习模型,以预测花生,鸡蛋和牛奶挑战的结果。每种过敏原的最佳性能模型是使用凹入和凸内核(LUCCK)方法创建的,该方法在曲线(AUC)(AUC)下分别用于花生,鸡蛋和牛奶OFC预测为0.76、0.68和0.70, 。通过Shapley添加说明(SHAP)的模型解释表明,特定的IgE以及SPTS的Wheal和Flare值高度预测了OFC结果。该分析的结果表明,机器学习有可能预测OFC结果,并揭示了相关的临床因素进行进一步研究。
translated by 谷歌翻译
医学中的机器学习利用了财富的医疗保健数据来提取知识,促进临床决策,最终改善护理。然而,在缺乏人口统计分集的数据集上培训的ML模型可以在适用于不足的人群时产生次优绩效(例如少数民族,社会经济地位较低),因此延续了健康差异。在这项研究中,我们评估了四种型分类,以预测高氯血症 - 一种经常由ICU人口中的侵袭性流体给药的条件 - 并将其在种族,性别和保险亚组中进行比较。我们观察到,除了基于实验室的患者的模型性能之外,还要添加社会决定因素特征。 40个模型 - 亚组中的40分,亚组测试产生了显着不同的AUC分数,提示在将ML模型应用于社会决定簇子组时的差异。我们敦促未来的研究人员设计主动调整潜在偏见的模型,并包括他们研究中的子组报告。
translated by 谷歌翻译
可说明的人工智能(XAI)被确定为使用机器学习(ML)模型进行预测时确定功能的重要性的可行方法。在这项研究中,我们创建了将个人健康信息(例如,他们的药物历史和合并症)作为输入的模型,并预测个体将具有急性冠状动脉综合征(ACS)不利结果的可能性。使用Xai,我们量化了特定药物对这些ACS预测的贡献,从而产生了基于XAI的药物检测技术,使用ACS作为检测的不利结果的示例。鉴定了1993年至2009年在1993年至2009年期间提供的65岁以上的人(解剖治疗化学(ATC)级别M)或心血管系统(ATC类C)药物,以及其药物历史,组合和其他关键特征来自联系的西澳大利亚数据集。培训多种ML模型以预测这些个体如果这些个体具有ACS相关的不利结果(即,用于ACS的放电诊断的死亡或住院),并且使用各种ML和XAI技术来计算哪种特征 - 特别是哪种药物 - 导致这些预测。发现ROFecoxib和Celecoxib的药物分配特征对ACS相关的不利结果预测(平均)的贡献大于零效果,并且发现ACS相关的不利结果可以预测72%的准确度。此外,发现Xai库石灰和Shap成功识别重要和不重要的功能,具有略微优于石灰的形状。 ML培训的ML模型与XAI算法串联的连接行政健康数据集可以成功地量化特征重要性,并且随着进一步的开发,可能被用作药物检测技术。
translated by 谷歌翻译
心脏病已成为对人类生活产生重大影响的最严重疾病之一。在过去的十年中,它已成为全球人民死亡的主要原因之一。为了防止患者进一步损害,准确地诊断为心脏病是一个重要因素。最近,我们看到了非侵入性医学程序的用法,例如医学领域的基于人工智能的技术。专门的机器学习采用了多种算法和技术,这些算法和技术被广泛使用,并且在较少的时间以诊断心脏病的准确诊断非常有用。但是,对心脏病的预测并不是一件容易的事。医疗数据集的规模不断增加,使从业者了解复杂的特征关系并做出疾病预测是一项复杂的任务。因此,这项研究的目的是从高度维数据集中确定最重要的风险因素,这有助于对心脏病的准确分类,并减少并发症。为了进行更广泛的分析,我们使用了具有各种医学特征的两个心脏病数据集。基准模型的分类结果证明,相关特征对分类精度产生了很大的影响。即使功能减少,与在全功能集中训练的模型相比,分类模型的性能随着训练时间的减少而显着提高。
translated by 谷歌翻译
快速准确地检测该疾病可以大大帮助减少任何国家医疗机构对任何大流行期间死亡率降低死亡率的压力。这项工作的目的是使用新型的机器学习框架创建多模式系统,该框架同时使用胸部X射线(CXR)图像和临床数据来预测COVID-19患者的严重程度。此外,该研究还提出了一种基于nom图的评分技术,用于预测高危患者死亡的可能性。这项研究使用了25种生物标志物和CXR图像,以预测意大利第一波Covid-19(3月至6月2020年3月至6月)在930名Covid-19患者中的风险。提出的多模式堆叠技术分别产生了89.03%,90.44%和89.03%的精度,灵敏度和F1分数,以识别低风险或高危患者。与CXR图像或临床数据相比,这种多模式方法可提高准确性6%。最后,使用多元逻辑回归的列线图评分系统 - 用于对第一阶段确定的高风险患者的死亡风险进行分层。使用随机森林特征选择模型将乳酸脱氢酶(LDH),O2百分比,白细胞(WBC)计数,年龄和C反应蛋白(CRP)鉴定为有用的预测指标。开发了五个预测因素参数和基于CXR图像的列函数评分,以量化死亡的概率并将其分为两个风险组:分别存活(<50%)和死亡(> = 50%)。多模式技术能够预测F1评分为92.88%的高危患者的死亡概率。开发和验证队列曲线下的面积分别为0.981和0.939。
translated by 谷歌翻译
Survival modeling in healthcare relies on explainable statistical models; yet, their underlying assumptions are often simplistic and, thus, unrealistic. Machine learning models can estimate more complex relationships and lead to more accurate predictions, but are non-interpretable. This study shows it is possible to estimate hospitalization for congestive heart failure by a 30 seconds single-lead electrocardiogram signal. Using a machine learning approach not only results in greater predictive power but also provides clinically meaningful interpretations. We train an eXtreme Gradient Boosting accelerated failure time model and exploit SHapley Additive exPlanations values to explain the effect of each feature on predictions. Our model achieved a concordance index of 0.828 and an area under the curve of 0.853 at one year and 0.858 at two years on a held-out test set of 6,573 patients. These results show that a rapid test based on an electrocardiogram could be crucial in targeting and treating high-risk individuals.
translated by 谷歌翻译
医院住宿时间(LOS)是最重要的医疗保健度量之一,反映了医院的服务质量,有助于改善医院调度和管理。LOS预测有助于成本管理,因为留在医院的患者通常在资源受到严重限制的情况下这样做。在这项研究中,我们通过机器学习和统计方法审查了LOS预测的论文。我们的文献综述考虑了对卒中患者LOS预测的研究研究。一些受访的研究表明,作者达成了相应的结论。例如,患者的年龄被认为是一些研究中卒中患者LOS的重要预测因子,而其他研究则认为年龄不是一个重要因素。因此,在该领域需要额外的研究以进一步了解卒中患者LOS的预测因子。
translated by 谷歌翻译
目的:创建和评估人工智能深度学习平台(Oraicle)的准确性,能够仅使用视网膜眼睛图像来预测个人整体5年心血管风险(CVD)以及组件风险因素的相对贡献,这些因素包括这一点风险。方法:我们从47,236个患者就诊的数据库中使用了165,907个视网膜图像。最初,每个图像与生物识别数据年龄,种族,性别,性,存在和持续时间HDL/LDL比以及任何CVD事件Wtihin 5年的视网膜图像采集5年。计算了基于Framingham方程的风险评分。还确定了个人和整体人口的实际CVD事件率。最后,仅使用年龄,种族,性别加上视网膜图像对Oraicle进行训练。结果:与基于弗雷明厄姆的分数相比,在接下来的5年中,Oraicle在预测心血管事件方面的准确性高达12%,尤其是对于最高风险的人群。每个限制性模型的可靠性和准确性对Oraicle的性能均优于最佳性能,表明它使用了两组数据中的数据来得出其最终结果。结论:视网膜摄影是便宜的,只需要最少的培训才能获得全自动,廉价的摄像头系统,现在可以广泛使用。因此,基于AI的CVD风险算法(例如Oraicle)有望使CV健康筛查更加准确,更加相似,并且更容易访问。此外,Oraicle评估构成个人总体风险的组件相对贡献的独特能力将根据个人的特定需求为治疗决策提供信息,从而增加了阳性健康结果的可能性。
translated by 谷歌翻译
谵妄是急性急性发病脑功能障碍,在紧急情况下,与较高的死亡率有关。由于其演示和风险因素难以检测和监测,这取决于患者的潜在病情。在我们的研究中,我们旨在识别谵妄人口中的亚型,并建立使用医疗信息MART进行密集护理IV(MIMIC-IV)数据来检测谵妄的亚组特定的预测模型。我们表明谵妄存在于谵妄中。对于特定于组的预测模型,还观察到特征重要性的差异。我们的工作可以重新校准每个谵妄亚组的现有谵妄预测模型,并提高ICU或急诊部门患者的谵妄检测和监测的精度。
translated by 谷歌翻译
风险评分广泛用于临床决策,通常由逻辑回归模型产生。基于机器学习的方法可以很好地识别重要的预测因子,但这种“黑匣子”变量选择限制解释性,并且从单个模型评估的可变重要性可以偏置。我们提出了一种强大而可解释的可解释的可解释选择方法,使用最近开发的福利可变重要性云(福利维奇)占模型的可变性。我们的方法评估和可视化了深入推理和透明变量选择的总变量贡献,并过滤出非重要贡献者来简化模型构建步骤。我们从可变贡献中获得了一个集合变量排名,这很容易与自动化和模块化的风险分数发生器,自动摩托,以方便的实现。在对早期死亡或意外再入住的研究中,福糖选定了6个候选变量中的6个,以创建一个良好的性能,从机器学习的排名到一个16变量模型具有类似的性能。
translated by 谷歌翻译
肥胖是一个重大的健康问题,增加了各种主要慢性病的风险,如糖尿病,癌症和中风。虽然通过横断面BMI录音识别的肥胖作用已经过分研究,但BMI轨迹的作用远远不大。在这项研究中,我们利用从大型和地理位置的EHR数据集中提取的BMI轨迹捕获大约200万个人的健康状况为期六年的健康状况。我们根据BMI轨迹定义九个新的可解释和基于证据的变量,以使用K-Means聚类方法将患者聚类为子组。我们在人口统计学,社会经济和生理测量变量方面彻底审查了每个集群特征,以指定簇中患者的不同性质。在我们的实验中,已被重新建立肥胖,高血压,阿尔茨海默和痴呆症的肥胖,高血压,阿尔茨海默氏症和痴呆症的直接关系,并且已经发现有几种慢性疾病的特异性特征的不同簇符合或与现有的知识体系互补。
translated by 谷歌翻译
Purpose: Hard-to-interpret Black-box Machine Learning (ML) were often used for early Alzheimer's Disease (AD) detection. Methods: To interpret eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Support Vector Machine (SVM) black-box models a workflow based on Shapley values was developed. All models were trained on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and evaluated for an independent ADNI test set, as well as the external Australian Imaging and Lifestyle flagship study of Ageing (AIBL), and Open Access Series of Imaging Studies (OASIS) datasets. Shapley values were compared to intuitively interpretable Decision Trees (DTs), and Logistic Regression (LR), as well as natural and permutation feature importances. To avoid the reduction of the explanation validity caused by correlated features, forward selection and aspect consolidation were implemented. Results: Some black-box models outperformed DTs and LR. The forward-selected features correspond to brain areas previously associated with AD. Shapley values identified biologically plausible associations with moderate to strong correlations with feature importances. The most important RF features to predict AD conversion were the volume of the amygdalae, and a cognitive test score. Good cognitive test performances and large brain volumes decreased the AD risk. The models trained using cognitive test scores significantly outperformed brain volumetric models ($p<0.05$). Cognitive Normal (CN) vs. AD models were successfully transferred to external datasets. Conclusion: In comparison to previous work, improved performances for ADNI and AIBL were achieved for CN vs. Mild Cognitive Impairment (MCI) classification using brain volumes. The Shapley values and the feature importances showed moderate to strong correlations.
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
细胞因子释放综合征(CRS),也称为细胞因子风暴,是嵌合抗原受体疗法的最大程度不良反应之一,在癌症治疗中表现出了有希望的结果。当出现时,可以通过分析特异性细胞因子和趋化因子谱的分析来识别CR,这些因子和趋化因子谱倾向于在患者之间表现出相似性。在本文中,我们使用机器学习算法利用了这些相似性,并着手开拓元观看知识的方法,以基于特定的细胞因子峰浓度和先前临床研究的证据来识别CRS。我们认为,这样的方法可以通过将临床医生与过去临床研究的CR知识相匹配,以分析可疑的细胞因子谱,以Swift CRS诊断的最终目的。在使用Real-World CRS临床数据评估期间,我们强调了我们提出的产生可解释结果方法的潜力,除了有效地识别细胞因子风暴的发作。
translated by 谷歌翻译
Early evaluation of patients who require special care and who have high death-expectancy in COVID-19, and the effective determination of relevant biomarkers on large sample-groups are important to reduce mortality. This study aimed to reveal the routine blood-value predictors of COVID-19 mortality and to determine the lethal-risk levels of these predictors during the disease process. The dataset of the study consists of 38 routine blood-values of 2597 patients who died (n = 233) and those who recovered (n = 2364) from COVID-19 in August-December, 2021. In this study, the histogram-based gradient-boosting (HGB) model was the most successful machine-learning classifier in detecting living and deceased COVID-19 patients (with squared F1 metrics F1^2 = 1). The most efficient binary combinations with procalcitonin were obtained with D-dimer, ESR, D-Bil and ferritin. The HGB model operated with these feature pairs correctly detected almost all of the patients who survived and those who died (precision > 0.98, recall > 0.98, F1^2 > 0.98). Furthermore, in the HGB model operated with a single feature, the most efficient features were procalcitonin (F1^2 = 0.96) and ferritin (F1^2 = 0.91). In addition, according to the two-threshold approach, ferritin values between 376.2 mkg/L and 396.0 mkg/L (F1^2 = 0.91) and pro-calcitonin values between 0.2 mkg/L and 5.2 mkg/L (F1^2 = 0.95) were found to be fatal risk levels for COVID-19. Considering all the results, we suggest that many features combined with these features, especially procalcitonin and ferritin, operated with the HGB model, can be used to achieve very successful results in the classification of those who live, and those who die from COVID-19. Moreover, we strongly recommend that clinicians consider the critical levels we have found for procalcitonin and ferritin properties, to reduce the lethality of the COVID-19 disease.
translated by 谷歌翻译
目的:Shapley添加说明(SHAP)是一种流行的事后技术,用于解释黑匣子模型。尽管已经对数据不平衡对预测模型的影响进行了广泛的研究,但在基于Shap的模型解释方面,它在很大程度上仍然未知。这项研究试图研究数据不平衡对深度学习模型的Shap解释的影响,并提出一种减轻这些影响的策略。材料和方法:我们建议在解释黑匣子模型时在背景中调整类别的类别,并在形状中进行解释数据。我们的数据平衡策略是构成背景数据和解释数据,同等分布。为了评估数据调整对模型解释的影响,我们建议将Beeswarm图用作定性工具,以识别“异常”解释伪像,并定量测试可变重要性和预测能力之间的一致性。我们在一项实证研究中证明了我们提出的方法,该研究使用医学信息MART(MIMIC-III)数据预测住院死亡率和多层概念。结果:使用数据平衡策略将使我们能够减少蜜蜂图图中的工件数量,从而减轻数据不平衡的负面影响。此外,通过平衡策略,来自相应重要性排名的顶级变量表明歧视能力得到了改善。讨论和结论:我们的发现表明,平衡的背景和解释数据可以帮助减少偏斜的数据分布引起的解释结果中的噪声,并提高可变重要性排名的可靠性。此外,这些平衡程序提高了在临床应用中识别出异常特征的患者方面的可能性。
translated by 谷歌翻译
本文介绍了一种使用旨在解决现实世界应用中CDSS的低适用性和可扩展性问题的数据驱动的预测模型来构建一致和适用的临床决策支持系统(CDSS)的方法。该方法基于域特定和数据驱动的支持程序的三种特定于域和数据驱动的支持程序,该程序将被纳入临床业务流程,具有更高的信任和预测结果和建议的解释性。在考虑的三个阶段,监管策略,数据驱动模式和解释程序被集成,以实现与决策者的自然域特定的互动,具有智能决策支持焦点的连续缩小。该提出的方法能够实现更高水平的自动化,可扩展性和CDSS的语义解释性。该方法是在软件解决方案中实现的,并在T2DM预测中进行了测试,使我们能够改善已知的临床尺度(例如FindRisk),同时保持与现有应用程序类似的特定问题的推理界面。这种继承与三分阶段的方法一起提供了更高的解决方案兼容性,并导致数据驱动的解决方案在现实案件中的信任,有效和解释应用。
translated by 谷歌翻译
The issue of left before treatment complete (LBTC) patients is common in emergency departments (EDs). This issue represents a medico-legal risk and may cause a revenue loss. Thus, understanding the factors that cause patients to leave before treatment is complete is vital to mitigate and potentially eliminate these adverse effects. This paper proposes a framework for studying the factors that affect LBTC outcomes in EDs. The framework integrates machine learning, metaheuristic optimization, and model interpretation techniques. Metaheuristic optimization is used for hyperparameter optimization--one of the main challenges of machine learning model development. Three metaheuristic optimization algorithms are employed for optimizing the parameters of extreme gradient boosting (XGB), which are simulated annealing (SA), adaptive simulated annealing (ASA), and adaptive tabu simulated annealing (ATSA). The optimized XGB models are used to predict the LBTC outcomes for the patients under treatment in ED. The designed algorithms are trained and tested using four data groups resulting from the feature selection phase. The model with the best predictive performance is interpreted using SHaply Additive exPlanations (SHAP) method. The findings show that ATSA-XGB outperformed other mode configurations with an accuracy, area under the curve (AUC), sensitivity, specificity, and F1-score of 86.61%, 87.50%, 85.71%, 87.51%, and 86.60%, respectively. The degree and the direction of effects of each feature were determined and explained using the SHAP method.
translated by 谷歌翻译