The issue of left before treatment complete (LBTC) patients is common in emergency departments (EDs). This issue represents a medico-legal risk and may cause a revenue loss. Thus, understanding the factors that cause patients to leave before treatment is complete is vital to mitigate and potentially eliminate these adverse effects. This paper proposes a framework for studying the factors that affect LBTC outcomes in EDs. The framework integrates machine learning, metaheuristic optimization, and model interpretation techniques. Metaheuristic optimization is used for hyperparameter optimization--one of the main challenges of machine learning model development. Three metaheuristic optimization algorithms are employed for optimizing the parameters of extreme gradient boosting (XGB), which are simulated annealing (SA), adaptive simulated annealing (ASA), and adaptive tabu simulated annealing (ATSA). The optimized XGB models are used to predict the LBTC outcomes for the patients under treatment in ED. The designed algorithms are trained and tested using four data groups resulting from the feature selection phase. The model with the best predictive performance is interpreted using SHaply Additive exPlanations (SHAP) method. The findings show that ATSA-XGB outperformed other mode configurations with an accuracy, area under the curve (AUC), sensitivity, specificity, and F1-score of 86.61%, 87.50%, 85.71%, 87.51%, and 86.60%, respectively. The degree and the direction of effects of each feature were determined and explained using the SHAP method.
translated by 谷歌翻译
Patient triage at emergency departments (EDs) is necessary to prioritize care for patients with critical and time-sensitive conditions. Different tools are used for patient triage and one of the most common ones is the emergency severity index (ESI), which has a scale of five levels, where level 1 is the most urgent and level 5 is the least urgent. This paper proposes a framework for utilizing machine learning to develop an e-triage tool that can be used at EDs. A large retrospective dataset of ED patient visits is obtained from the electronic health record of a healthcare provider in the Midwest of the US for three years. However, the main challenge of using machine learning algorithms is that most of them have many parameters and without optimizing these parameters, developing a high-performance model is not possible. This paper proposes an approach to optimize the hyperparameters of machine learning. The metaheuristic optimization algorithms simulated annealing (SA) and adaptive simulated annealing (ASA) are proposed to optimize the parameters of extreme gradient boosting (XGB) and categorical boosting (CaB). The newly proposed algorithms are SA-XGB, ASA-XGB, SA-CaB, ASA-CaB. Grid search (GS), which is a traditional approach used for machine learning fine-tunning is also used to fine-tune the parameters of XGB and CaB, which are named GS-XGB and GS-CaB. The six algorithms are trained and tested using eight data groups obtained from the feature selection phase. The results show ASA-CaB outperformed all the proposed algorithms with accuracy, precision, recall, and f1 of 83.3%, 83.2%, 83.3%, 83.2%, respectively.
translated by 谷歌翻译
口服食物挑战(OFC)对于准确诊断患者的食物过敏至关重要。但是,患者不愿接受OFC,对于那些这样做的患者,在农村/社区医疗保健环境中,对过敏症患者的使用率有限。通过机器学习方法对OFC结果的预测可以促进在家中食品过敏原的删除,在OFC中改善患者和医师的舒适度,并通过最大程度地减少执行的OFC的数量来节省医疗资源。临床数据是从共同接受1,284个OFC的1,12例患者那里收集的,包括临床因素,包括血清特异性IgE,总IgE,皮肤刺测试(SPTS),症状,性别和年龄。使用这些临床特征,构建了机器学习模型,以预测花生,鸡蛋和牛奶挑战的结果。每种过敏原的最佳性能模型是使用凹入和凸内核(LUCCK)方法创建的,该方法在曲线(AUC)(AUC)下分别用于花生,鸡蛋和牛奶OFC预测为0.76、0.68和0.70, 。通过Shapley添加说明(SHAP)的模型解释表明,特定的IgE以及SPTS的Wheal和Flare值高度预测了OFC结果。该分析的结果表明,机器学习有可能预测OFC结果,并揭示了相关的临床因素进行进一步研究。
translated by 谷歌翻译
抗微生物抗性(AMR)是患者的风险和医疗保健系统的负担。但是,AMR测定通常需要几天。本研究为基于易于使用的临床和微生物预测因子,包括患者人口统计,医院住宿数据,诊断,临床特征以及微生物/抗微生物特征,以及仅使用微生物/抗微生物特征将这些模型与微生物/抗微生物特性进行基于幼稚抗体模型的模型的预测模型。在培养之前准确地预测阻力的能力可以向临床决策提供通知临床决策并缩短行动时间。这里采用的机器学习算法显示出改进的分类性能(接收器操作特性曲线0.88-0.89的区域)与使用飞利浦EICU研究所的6个生物和10个抗生素的接收器操作特征曲线0.86下的接收器下的面积为0.88-0.89)(ERI )数据库。该方法可以帮助指导抗菌治疗,目的是改善患者结果并减少不必要或无效抗生素的使用。
translated by 谷歌翻译
本文研究了与可解释的AI(XAI)实践有关的两个不同但相关的问题。机器学习(ML)在金融服务中越来越重要,例如预批准,信用承销,投资以及各种前端和后端活动。机器学习可以自动检测培训数据中的非线性和相互作用,从而促进更快,更准确的信用决策。但是,机器学习模型是不透明的,难以解释,这是建立可靠技术所需的关键要素。该研究比较了各种机器学习模型,包括单个分类器(逻辑回归,决策树,LDA,QDA),异质集合(Adaboost,随机森林)和顺序神经网络。结果表明,整体分类器和神经网络的表现优于表现。此外,使用基于美国P2P贷款平台Lending Club提供的开放式访问数据集评估了两种先进的事后不可解释能力 - 石灰和外形来评估基于ML的信用评分模型。对于这项研究,我们还使用机器学习算法来开发新的投资模型,并探索可以最大化盈利能力同时最大程度地降低风险的投资组合策略。
translated by 谷歌翻译
急诊科(EDS)的表现对于任何医疗保健系统都非常重要,因为它们是许多患者的入口处。但是,除其他因素外,患者敏锐度水平和访问患者的相应治疗要求的变异性对决策者构成了重大挑战。平衡患者的等待时间首先是由医生与所有敏锐度水平的总长度相处的,对于维持所有患者的可接受的操作表现至关重要。为了解决这些要求在为患者分配空闲资源时,过去提出了几种方法,包括累积的优先排队(APQ)方法。 APQ方法在系统和敏锐度水平方面将优先评分线性分配给患者。因此,选择决策基于一个简单的系统表示,该表示作为选择功能的输入。本文研究了基于机器学习(ML)的患者选择方法的潜力。它假设对于大量的培训数据,包括多种不同的系统状态,(接近)最佳分配可以通过(启发式)优化器计算出关于所选的性能指标,并旨在模仿此类最佳行为。应用于新情况。因此,它结合了系统的全面状态表示和复杂的非线性选择函数。拟议方法的动机是,高质量的选择决策可能取决于描述ED当前状态的各种因素,而不仅限于等待时间,而这些因素可以由ML模型捕获和利用。结果表明,所提出的方法显着优于大多数评估设置的APQ方法
translated by 谷歌翻译
痴呆症是一种神经精神脑障碍,通常会在一个或多个脑细胞停止部分或根本停止工作时发生。在疾病的早期阶段诊断这种疾病是从不良后果中挽救生命并为他们提供更好的医疗保健的至关重要的任务。事实证明,机器学习方法在预测疾病早期痴呆症方面是准确的。痴呆的预测在很大程度上取决于通常从归一化的全脑体积(NWBV)和地图集缩放系数(ASF)收集的收集数据类型,这些数据通常测量并从磁共振成像(MRIS)中进行校正。年龄和性别等其他生物学特征也可以帮助诊断痴呆症。尽管许多研究使用机器学习来预测痴呆症,但我们无法就这些方法的稳定性得出结论,而这些方法在不同的实验条件下更准确。因此,本文研究了有关痴呆预测的机器学习算法的性能的结论稳定性。为此,使用7种机器学习算法和两种功能还原算法,即信息增益(IG)和主成分分析(PCA)进行大量实验。为了检查这些算法的稳定性,IG的特征选择阈值从20%更改为100%,PCA尺寸从2到8。这导致了7x9 + 7x7 = 112实验。在每个实验中,都记录了各种分类评估数据。获得的结果表明,在七种算法中,支持向量机和天真的贝叶斯是最稳定的算法,同时更改选择阈值。同样,发现使用IG似乎比使用PCA预测痴呆症更有效。
translated by 谷歌翻译
背景:几项研究突出了考虑急性冠状动脉综合征(ACS)诊断和治疗性差异的重要性。然而,几乎已经研究了ACS子群中的性别特异性风险标志物。本研究旨在探索机器学习(ML)模型,以识别从电子健康记录(EHR)的公共数据库中的ACS子群体中的妇女和男性的住院死亡率标志。方法:从医疗信息MART中提取1,299名患有的ST升高的心肌梗死(Stemi)和2,820名非St-Expation心肌梗死患者进行重症监护(MIMIC)-III数据库。我们培训和验证了死亡率预测模型,并使用了可解释性技术来识别每个子群体的性别特异性标记。结果:基于极端梯度升压的模型(XGBoost)实现了最高性能:STEMI和AUC = 0.94(95 \%CI:0.80- 0.90)为nstemi。对于STEMI,女性的顶部标记是慢性肾功能衰竭,心率高,年龄超过70岁。对于男性来说,顶部标记是急性肾功能衰竭,高肌钙蛋白T水平,年龄超过75岁。然而,对于NStemi,女性的顶部标记较低,肌钙蛋白水平低,尿素水平高,80多年。对于男性来说,顶部标记是高心率,肌酐水平,年龄超过70岁。结论:我们的结果表明,通过解释ehrs培训的ML死亡率模型,通过解释ML死亡率模型显示不同ACS子群的可能的显着和相干的性别特异性风险标记。在妇女与男性的确定风险标志中观察到差异,突出了考虑性别特异性标记在实施更适当的治疗策略和更好的临床结果方面的重要性。
translated by 谷歌翻译
快速准确地检测该疾病可以大大帮助减少任何国家医疗机构对任何大流行期间死亡率降低死亡率的压力。这项工作的目的是使用新型的机器学习框架创建多模式系统,该框架同时使用胸部X射线(CXR)图像和临床数据来预测COVID-19患者的严重程度。此外,该研究还提出了一种基于nom图的评分技术,用于预测高危患者死亡的可能性。这项研究使用了25种生物标志物和CXR图像,以预测意大利第一波Covid-19(3月至6月2020年3月至6月)在930名Covid-19患者中的风险。提出的多模式堆叠技术分别产生了89.03%,90.44%和89.03%的精度,灵敏度和F1分数,以识别低风险或高危患者。与CXR图像或临床数据相比,这种多模式方法可提高准确性6%。最后,使用多元逻辑回归的列线图评分系统 - 用于对第一阶段确定的高风险患者的死亡风险进行分层。使用随机森林特征选择模型将乳酸脱氢酶(LDH),O2百分比,白细胞(WBC)计数,年龄和C反应蛋白(CRP)鉴定为有用的预测指标。开发了五个预测因素参数和基于CXR图像的列函数评分,以量化死亡的概率并将其分为两个风险组:分别存活(<50%)和死亡(> = 50%)。多模式技术能够预测F1评分为92.88%的高危患者的死亡概率。开发和验证队列曲线下的面积分别为0.981和0.939。
translated by 谷歌翻译
目的:提高地理访问仍然是确定卫生政策设计中区域医疗资源充足的关键问题。然而,患者的选择可以是各种因素的复杂交互的结果。本研究的目的是提出深度神经网络方法来模拟患者选择在旅行距离中的复杂决定,以获取护理,这是分配资源的决策制定的重要指标。方法:我们使用了台湾的4年全国保险数据,并积累了早期文献中讨论的可能特征。本研究提出使用卷积神经网络(CNN)基于框架来进行预测。模型性能对其他机器学习方法进行了测试。使用集成梯度(IG)进一步解释了所提出的框架来分析特征权重。结果:我们成功地证明了使用基于CNN的框架来预测患者的旅行距离的有效性,实现0.968,AUC的精度,0.969,敏感性为0.960,比0.989的特异性。基于CNN的框架优于所有其他方法。在这项研究中,IG重量可能是可解释的;然而,这种关系与公共卫生中的已知指标不相似,类似于普通共识。结论:我们的结果表明了基于深度学习的旅行距离预测模型的可行性。它有可能在资源分配中指导政策制定。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
机器学习渗透到许多行业,这为公司带来了新的利益来源。然而,在人寿保险行业中,机器学习在实践中并未被广泛使用,因为在过去几年中,统计模型表明了它们的风险评估效率。因此,保险公司可能面临评估人工智能价值的困难。随着时间的流逝,专注于人寿保险行业的修改突出了将机器学习用于保险公司的利益以及通过释放数据价值带来的利益。本文回顾了传统的生存建模方法论,并通过机器学习技术扩展了它们。它指出了与常规机器学习模型的差异,并强调了特定实现在与机器学习模型家族中面对审查数据的重要性。在本文的补充中,已经开发了Python库。已经调整了不同的开源机器学习算法,以适应人寿保险数据的特殊性,即检查和截断。此类模型可以轻松地从该SCOR库中应用,以准确地模拟人寿保险风险。
translated by 谷歌翻译
Landslides在人为全球变暖时代的人类生活和财产的常规发生和令人震惊的威胁。利用数据驱动方法早日预测利用数据驱动方法是时间的要求。在这项研究中,我们探讨了最能描述Landslide易感性与最先进的机器学习方法的雄辩功能。在我们的研究中,我们采用了最先进的机器学习算法,包括XGBoost,LR,KNN,SVM,Adaboost用于滑坡敏感性预测。要查找每个单独分类器的最佳超级参数以优化性能,我们已纳入网格搜索方法,交叉验证10倍。在这种情况下,XGBoost的优化版本优先于所有其他分类器,交叉验证加权F1得分为94.62%。其次是通过合并Treeshap并识别斜坡,高度,TWI等雄辩的特征来探索XGBoost分类器,这些特征在于,XGBoost分类器的性能大多是Landuse,NDVI,SPI等功能,这对模型性能较小。 。根据Treeshap的特征说明,我们选择了15个最重要的滑坡因果因素。显然,XGBoost的优化版本随着特征减少40%,在具有十字架的流行评估度量方面表现优于所有其他分类器。 - 在培训和AUC分数的加权F1得分为95.01%,AUC得分为97%。
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
风险评分广泛用于临床决策,通常由逻辑回归模型产生。基于机器学习的方法可以很好地识别重要的预测因子,但这种“黑匣子”变量选择限制解释性,并且从单个模型评估的可变重要性可以偏置。我们提出了一种强大而可解释的可解释的可解释选择方法,使用最近开发的福利可变重要性云(福利维奇)占模型的可变性。我们的方法评估和可视化了深入推理和透明变量选择的总变量贡献,并过滤出非重要贡献者来简化模型构建步骤。我们从可变贡献中获得了一个集合变量排名,这很容易与自动化和模块化的风险分数发生器,自动摩托,以方便的实现。在对早期死亡或意外再入住的研究中,福糖选定了6个候选变量中的6个,以创建一个良好的性能,从机器学习的排名到一个16变量模型具有类似的性能。
translated by 谷歌翻译
HyperParameter Optimization(HPO)是一种确保机器学习(ML)算法最佳性能的必要步骤。已经开发了几种方法来执行HPO;其中大部分都集中在优化一个性能措施(通常是基于错误的措施),并且在这种单一目标HPO问题上的文献是巨大的。然而,最近似乎似乎侧重于同时优化多个冲突目标的算法。本文提出了对2014年至2020年的文献的系统调查,在多目标HPO算法上发布,区分了基于成逐的算法,Metamodel的算法以及使用两者混合的方法。我们还讨论了用于比较多目标HPO程序和今后的研究方向的质量指标。
translated by 谷歌翻译
COVID-19的大流行造成了毁灭性的经济和社会破坏,使全球医疗机构的资源紧张。这导致全国范围内呼吁模型预测Covid-19患者的住院和严重疾病,以告知有限医疗资源的分配。我们回应针对儿科人群的其中一种。为了应对这一挑战,我们使用电子健康记录研究了针对儿科人群的两项预测任务:1)预测哪些儿童更有可能住院,而2)在住院儿童中,哪些孩子更有可能出现严重的症状。我们通过新颖的机器学习模型MEDML应对国家儿科Covid-19数据挑战。 MEDML根据超过600万个医学概念的医学知识和倾向得分提取了最预测的特征,并通过图神经网络(GNN)结合了异质医学特征之间的功能间关系。我们使用来自国家队列协作(N3C)数据集的数据评估了143,605名患者的MEDML,并在143,605名患者的住院预测任务中评估了严重性预测任务的11,465名患者。我们还报告了详细的小组级和个人级特征的重要性分析,以评估模型的解释性。与最佳的基线机器学习模型相比,MEDML的AUROC得分高达7%,AUPRC得分高达14%,并且自大流行以来的所有九个国家地理区域以及所有三个月的跨度都表现良好。我们的跨学科研究团队开发了一种将临床领域知识纳入新型机器学习模型的框架的方法,该框架比当前最新的数据驱动的功能选择方法更具预测性和可解释。
translated by 谷歌翻译
血浆定义为物质的第四个状态,在高电场下可以在大气压下产生非热血浆。现在众所周知,血浆激活液体(PAL)的强和广谱抗菌作用。机器学习(ML)在医疗领域的可靠适用性也鼓励其在等离子体医学领域的应用。因此,在PALS上的ML应用可以提出一种新的观点,以更好地了解各种参数对其抗菌作用的影响。在本文中,通过使用先前获得的数据来定性预测PAL的体外抗菌活性,从而介绍了比较监督的ML模型。进行了文献搜索,并从33个相关文章中收集了数据。在所需的预处理步骤之后,将两种监督的ML方法(即分类和回归)应用于数据以获得微生物灭活(MI)预测。对于分类,MI分为四类,对于回归,MI被用作连续变量。为分类和回归模型进行了两种不同的可靠交叉验证策略,以评估所提出的方法。重复分层的K折交叉验证和K折交叉验证。我们还研究了不同特征对模型的影响。结果表明,高参数优化的随机森林分类器(ORFC)和随机森林回归者(ORFR)分别比其他模型进行了分类和回归的模型更好。最后,获得ORFC的最佳测试精度为82.68%,ORFR的R2为0.75。 ML技术可能有助于更好地理解在所需的抗菌作用中具有主要作用的血浆参数。此外,此类发现可能有助于将来的血浆剂量定义。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
心脏病已成为对人类生活产生重大影响的最严重疾病之一。在过去的十年中,它已成为全球人民死亡的主要原因之一。为了防止患者进一步损害,准确地诊断为心脏病是一个重要因素。最近,我们看到了非侵入性医学程序的用法,例如医学领域的基于人工智能的技术。专门的机器学习采用了多种算法和技术,这些算法和技术被广泛使用,并且在较少的时间以诊断心脏病的准确诊断非常有用。但是,对心脏病的预测并不是一件容易的事。医疗数据集的规模不断增加,使从业者了解复杂的特征关系并做出疾病预测是一项复杂的任务。因此,这项研究的目的是从高度维数据集中确定最重要的风险因素,这有助于对心脏病的准确分类,并减少并发症。为了进行更广泛的分析,我们使用了具有各种医学特征的两个心脏病数据集。基准模型的分类结果证明,相关特征对分类精度产生了很大的影响。即使功能减少,与在全功能集中训练的模型相比,分类模型的性能随着训练时间的减少而显着提高。
translated by 谷歌翻译