There is a growing interest in developing unlearnable examples (UEs) against visual privacy leaks on the Internet. UEs are training samples added with invisible but unlearnable noise, which have been found can prevent unauthorized training of machine learning models. UEs typically are generated via a bilevel optimization framework with a surrogate model to remove (minimize) errors from the original samples, and then applied to protect the data against unknown target models. However, existing UE generation methods all rely on an ideal assumption called label-consistency, where the hackers and protectors are assumed to hold the same label for a given sample. In this work, we propose and promote a more practical label-agnostic setting, where the hackers may exploit the protected data quite differently from the protectors. E.g., a m-class unlearnable dataset held by the protector may be exploited by the hacker as a n-class dataset. Existing UE generation methods are rendered ineffective in this challenging setting. To tackle this challenge, we present a novel technique called Unlearnable Clusters (UCs) to generate label-agnostic unlearnable examples with cluster-wise perturbations. Furthermore, we propose to leverage VisionandLanguage Pre-trained Models (VLPMs) like CLIP as the surrogate model to improve the transferability of the crafted UCs to diverse domains. We empirically verify the effectiveness of our proposed approach under a variety of settings with different datasets, target models, and even commercial platforms Microsoft Azure and Baidu PaddlePaddle.
translated by 谷歌翻译
不分青红皂白血管中毒攻击,它为训练数据添加了不可察觉的扰动,以最大化训练有素的模型的测试错误,已成为一个时尚的主题,因为它们被认为能够防止未经授权使用数据。在这项工作中,我们调查为什么这些扰动原则上的工作。我们发现,当分配了相应样本的目标标签时,高级中毒攻击的扰动几乎是\ textBF {线性分离},因此可以为学习目标作为\ emph {快捷方式}工作。这个重要的人口财产尚未在之前揭幕。此外,我们进一步验证了线性可分性确实是中毒攻击的摩擦。我们将线性可分离数据综合为扰动,表明这种合成扰动与故意制作的攻击一样强大。我们的发现表明,\ emph {捷径学习}问题比以前认为深入学习依赖于快捷方式,即使它们与正常特征相混合,也会依赖于捷径。这一发现还建议预审训练的特征提取器会有效地禁用这些中毒攻击。
translated by 谷歌翻译
普遍认为对抗培训是一种可靠的方法来改善对抗对抗攻击的模型稳健性。但是,在本文中,我们表明,当训练在一种类型的中毒数据时,对抗性培训也可以被愚蠢地具有灾难性行为,例如,$ <1 \%$强大的测试精度,以$> 90 \%$强大的训练准确度在CiFar-10数据集上。以前,在培训数据中,已经成功愚弄了标准培训($ 15.8 \%$标准测试精度,在CIFAR-10数据集中的标准训练准确度为99.9美元,但它们的中毒可以很容易地删除采用对抗性培训。因此,我们的目标是设计一种名为Advin的新型诱导噪声,这是一种不可动摇的培训数据中毒。 Advin不仅可以通过大幅度的利润率降低对抗性培训的鲁棒性,例如,从Cifar-10数据集每次为0.57 \%$ 0.57 \%$ 0.57 \%$ 0.1,但也有效地愚弄标准培训($ 13.1 \%$标准测试准确性$ 100 \%$标准培训准确度)。此外,否则可以应用于防止个人数据(如SELYIES)在没有授权的情况下剥削,无论是标准还是对抗性培训。
translated by 谷歌翻译
The success of deep learning is partly attributed to the availability of massive data downloaded freely from the Internet. However, it also means that users' private data may be collected by commercial organizations without consent and used to train their models. Therefore, it's important and necessary to develop a method or tool to prevent unauthorized data exploitation. In this paper, we propose ConfounderGAN, a generative adversarial network (GAN) that can make personal image data unlearnable to protect the data privacy of its owners. Specifically, the noise produced by the generator for each image has the confounder property. It can build spurious correlations between images and labels, so that the model cannot learn the correct mapping from images to labels in this noise-added dataset. Meanwhile, the discriminator is used to ensure that the generated noise is small and imperceptible, thereby remaining the normal utility of the encrypted image for humans. The experiments are conducted in six image classification datasets, consisting of three natural object datasets and three medical datasets. The results demonstrate that our method not only outperforms state-of-the-art methods in standard settings, but can also be applied to fast encryption scenarios. Moreover, we show a series of transferability and stability experiments to further illustrate the effectiveness and superiority of our method.
translated by 谷歌翻译
从社交媒体中刮擦的数据的流行率是获取数据集的一种手段,这导致人们对未经授权使用数据的关注日益严重。已经提出了数据中毒攻击是一种反对刮擦的堡垒,因为它们通过添加微小的,不可察觉的扰动来使数据“无法透视”。不幸的是,现有方法需要了解目标体系结构和完整的数据集,以便可以训练替代网络,其参数用于生成攻击。在这项工作中,我们引入了自回旋(AR)中毒,这种方法可以生成中毒的数据而无需访问更广泛的数据集。提出的AR扰动是通用的,可以在不同的数据集上应用,并且可以毒化不同的体系结构。与现有的未透视方法相比,我们的AR毒物更具抵抗力的防御能力,例如对抗性训练和强大的数据增强。我们的分析进一步洞悉了有效的数据毒物。
translated by 谷歌翻译
制作对抗性攻击的大多数方法都集中在具有单个主体对象的场景上(例如,来自Imagenet的图像)。另一方面,自然场景包括多个在语义上相关的主要对象。因此,探索设计攻击策略至关重要,这些攻击策略超出了在单对象场景上学习或攻击单对象受害者分类器。由于其固有的属性将扰动向未知模型的强大可传递性强,因此本文介绍了使用生成模型对多对象场景的对抗性攻击的第一种方法。为了代表输入场景中不同对象之间的关系,我们利用开源的预训练的视觉语言模型剪辑(对比语言图像 - 预训练),并动机利用语言中的编码语义来利用编码的语义空间与视觉空间一起。我们称这种攻击方法生成对抗性多对象场景攻击(GAMA)。 GAMA展示了剪辑模型作为攻击者的工具的实用性,以训练可强大的扰动发电机为多对象场景。使用联合图像文本功能来训练发电机,我们表明GAMA可以在各种攻击环境中制作有效的可转移扰动,以欺骗受害者分类器。例如,GAMA触发的错误分类比在黑框设置中的最新生成方法高出约16%,在黑框设置中,分类器体系结构和攻击者的数据分布都与受害者不同。我们的代码将很快公开提供。
translated by 谷歌翻译
随着机器学习数据的策展变得越来越自动化,数据集篡改是一种安装威胁。后门攻击者通过培训数据篡改,以嵌入在该数据上培训的模型中的漏洞。然后通过将“触发”放入模型的输入中的推理时间以推理时间激活此漏洞。典型的后门攻击将触发器直接插入训练数据,尽管在检查时可能会看到这种攻击。相比之下,隐藏的触发后托攻击攻击达到中毒,而无需将触发器放入训练数据即可。然而,这种隐藏的触发攻击在从头开始培训的中毒神经网络时无效。我们开发了一个新的隐藏触发攻击,睡眠代理,在制备过程中使用梯度匹配,数据选择和目标模型重新培训。睡眠者代理是第一个隐藏的触发后门攻击,以对从头开始培训的神经网络有效。我们展示了Imagenet和黑盒设置的有效性。我们的实现代码可以在https://github.com/hsouri/sleeper-agent找到。
translated by 谷歌翻译
计算能力和大型培训数据集的可用性增加,机器学习的成功助长了。假设它充分代表了在测试时遇到的数据,则使用培训数据来学习新模型或更新现有模型。这种假设受到中毒威胁的挑战,这种攻击会操纵训练数据,以损害模型在测试时的表现。尽管中毒已被认为是行业应用中的相关威胁,到目前为止,已经提出了各种不同的攻击和防御措施,但对该领域的完整系统化和批判性审查仍然缺失。在这项调查中,我们在机器学习中提供了中毒攻击和防御措施的全面系统化,审查了过去15年中该领域发表的100多篇论文。我们首先对当前的威胁模型和攻击进行分类,然后相应地组织现有防御。虽然我们主要关注计算机视觉应用程序,但我们认为我们的系统化还包括其他数据模式的最新攻击和防御。最后,我们讨论了中毒研究的现有资源,并阐明了当前的局限性和该研究领域的开放研究问题。
translated by 谷歌翻译
Vertical federated learning (VFL) is an emerging paradigm that enables collaborators to build machine learning models together in a distributed fashion. In general, these parties have a group of users in common but own different features. Existing VFL frameworks use cryptographic techniques to provide data privacy and security guarantees, leading to a line of works studying computing efficiency and fast implementation. However, the security of VFL's model remains underexplored.
translated by 谷歌翻译
后门攻击已成为深度神经网络(DNN)的主要安全威胁。虽然现有的防御方法在检测或擦除后以后展示了有希望的结果,但仍然尚不清楚是否可以设计强大的培训方法,以防止后门触发器首先注入训练的模型。在本文中,我们介绍了\ emph {反后门学习}的概念,旨在培训\ emph {Clean}模型给出了后门中毒数据。我们将整体学习过程框架作为学习\ emph {clean}和\ emph {backdoor}部分的双重任务。从这种观点来看,我们确定了两个后门攻击的固有特征,因为他们的弱点2)后门任务与特定类(后门目标类)相关联。根据这两个弱点,我们提出了一般学习计划,反后门学习(ABL),在培训期间自动防止后门攻击。 ABL引入了标准培训的两级\ EMPH {梯度上升}机制,帮助分离早期训练阶段的后台示例,2)在后续训练阶段中断后门示例和目标类之间的相关性。通过对多个基准数据集的广泛实验,针对10个最先进的攻击,我们经验证明,后卫中毒数据上的ABL培训模型实现了与纯净清洁数据训练的相同性能。代码可用于\ url {https:/github.com/boylyg/abl}。
translated by 谷歌翻译
可转移的对抗性攻击优化了从验证的替代模型和已知标签空间中的对手,以欺骗未知的黑盒模型。因此,这些攻击受到有效的替代模型的可用性受到限制。在这项工作中,我们放宽了这一假设,并提出了对抗像素的恢复,作为一种自制的替代方案,可以在无标签和很少的数据样本的条件下从头开始训练有效的替代模型。我们的培训方法是基于一个最小目标的目标,该目标通过对抗目标减少过度拟合,从而为更概括的替代模型进行了优化。我们提出的攻击是对对抗性像素恢复的补充,并且独立于任何特定任务目标,因为它可以以自我监督的方式启动。我们成功地证明了我们对视觉变压器方法的对抗性可传递性以及卷积神经网络,用于分类,对象检测和视频分割的任务。我们的代码和预培训的代理模型可在以下网址找到:https://github.com/hashmatshadab/apr
translated by 谷歌翻译
与令人印象深刻的进步触动了我们社会的各个方面,基于深度神经网络(DNN)的AI技术正在带来越来越多的安全问题。虽然在考试时间运行的攻击垄断了研究人员的初始关注,但是通过干扰培训过程来利用破坏DNN模型的可能性,代表了破坏训练过程的可能性,这是破坏AI技术的可靠性的进一步严重威胁。在后门攻击中,攻击者损坏了培训数据,以便在测试时间诱导错误的行为。然而,测试时间误差仅在存在与正确制作的输入样本对应的触发事件的情况下被激活。通过这种方式,损坏的网络继续正常输入的预期工作,并且只有当攻击者决定激活网络内隐藏的后门时,才会发生恶意行为。在过去几年中,后门攻击一直是强烈的研究活动的主题,重点是新的攻击阶段的发展,以及可能对策的提议。此概述文件的目标是审查发表的作品,直到现在,分类到目前为止提出的不同类型的攻击和防御。指导分析的分类基于攻击者对培训过程的控制量,以及防御者验证用于培训的数据的完整性,并监控DNN在培训和测试中的操作时间。因此,拟议的分析特别适合于参考他们在运营的应用方案的攻击和防御的强度和弱点。
translated by 谷歌翻译
最近的工作表明,难以察觉的扰动可以应用于工艺未被动实施例(ULE),即其内容不能用于改善训练期间的分类器的图像。在本文中,我们揭示了研究人员应遵循的道路,因为它们最初制定了(Uleos)。本文进行了四项贡献。首先,我们展示了Uleos利用颜色,因此,可以通过简单的灰度预过滤来减轻它们的效果,而无需诉诸对抗性培训。其次,我们向Uleos提出了一个延伸,它被称为uleo-grayaugs,这将通过在优化期间利用灰度知识和数据增强来迫使所产生的ules远离频道明智的颜色扰动。第三,我们表明,在复杂的卷积神经网络(CNN)分类器的情况下,使用多层的Perceptrons(MLP)产生的Uleos是有效的,这表明CNN遭受了对电机的特定漏洞。第四,我们证明当分类器培训ULEOS时,对抗性训练将防止在清洁图像和对抗性图像上测量的准确度。在一起,我们的贡献代表了不可见的例子的艺术状态的大量进展,但也揭示了他们行为的重要特征,必须更好地理解,以实现进一步的改进。
translated by 谷歌翻译
Learning-based pattern classifiers, including deep networks, have shown impressive performance in several application domains, ranging from computer vision to cybersecurity. However, it has also been shown that adversarial input perturbations carefully crafted either at training or at test time can easily subvert their predictions. The vulnerability of machine learning to such wild patterns (also referred to as adversarial examples), along with the design of suitable countermeasures, have been investigated in the research field of adversarial machine learning. In this work, we provide a thorough overview of the evolution of this research area over the last ten years and beyond, starting from pioneering, earlier work on the security of non-deep learning algorithms up to more recent work aimed to understand the security properties of deep learning algorithms, in the context of computer vision and cybersecurity tasks. We report interesting connections between these apparently-different lines of work, highlighting common misconceptions related to the security evaluation of machine-learning algorithms. We review the main threat models and attacks defined to this end, and discuss the main limitations of current work, along with the corresponding future challenges towards the design of more secure learning algorithms.
translated by 谷歌翻译
最近的研究表明,深层神经网络容易受到不同类型的攻击,例如对抗性攻击,数据中毒攻击和后门攻击。其中,后门攻击是最狡猾的攻击,几乎可以在深度学习管道的每个阶段发生。因此,后门攻击吸引了学术界和行业的许多兴趣。但是,大多数现有的后门攻击方法对于某些轻松的预处理(例如常见数据转换)都是可见的或脆弱的。为了解决这些限制,我们提出了一种强大而无形的后门攻击,称为“毒药”。具体而言,我们首先利用图像结构作为目标中毒区域,并用毒药(信息)填充它们以生成触发图案。由于图像结构可以在数据转换期间保持其语义含义,因此这种触发模式对数据转换本质上是强大的。然后,我们利用深度注射网络将这种触发模式嵌入封面图像中,以达到隐身性。与现有流行的后门攻击方法相比,毒药的墨水在隐形和健壮性方面都优于表现。通过广泛的实验,我们证明了毒药不仅是不同数据集和网络体系结构的一般性,而且对于不同的攻击场景也很灵活。此外,它对许多最先进的防御技术也具有非常强烈的抵抗力。
translated by 谷歌翻译
删除攻击旨在通过略微扰动正确标记的训练示例的特征来大幅恶化学习模型的测试准确性。通过将这种恶意攻击正式地找到特定$ \ infty $ -wassersein球中的最坏情况培训数据,我们表明最小化扰动数据的对抗性风险相当于优化原始数据上的自然风险的上限。这意味着对抗性培训可以作为防止妄想攻击的原则防御。因此,通过普遍训练可以很大程度地回收测试精度。为了进一步了解国防的内部机制,我们披露了对抗性培训可以通过防止学习者过于依赖于自然环境中的非鲁棒特征来抵制妄想扰动。最后,我们将我们的理论调查结果与一系列关于流行的基准数据集进行了补充,这表明防御能够承受六种不同的实际攻击。在面对令人难以闻名的对手时,理论和经验结果投票给逆势训练。
translated by 谷歌翻译
In the scenario of black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful adversarial perturbation based on query feedback under a query budget. Due to the limited feedback information, existing query-based black-box attack methods often require many queries for attacking each benign example. To reduce query cost, we propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability. Specifically, by treating the attack on each benign example as one task, we develop a meta-learning framework by training a meta-generator to produce perturbations conditioned on benign examples. When attacking a new benign example, the meta generator can be quickly fine-tuned based on the feedback information of the new task as well as a few historical attacks to produce effective perturbations. Moreover, since the meta-train procedure consumes many queries to learn a generalizable generator, we utilize model-level adversarial transferability to train the meta-generator on a white-box surrogate model, then transfer it to help the attack against the target model. The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance, which is verified by extensive experiments.
translated by 谷歌翻译
这项工作是对对使用Dino训练的自我监督视觉变压器的对抗性攻击的鲁棒性进行的首次分析。首先,我们评估通过自学学历的特征是否比受到监督学习中出现的人更强大。然后,我们介绍在潜在空间中攻击的属性。最后,我们评估了三种著名的防御策略是否可以通过微调分类头来提高下游任务中的对抗性鲁棒性,即使考虑到有限的计算资源,也可以提供鲁棒性。这些防御策略是:对抗性训练,合奏对抗训练和专业网络的合奏。
translated by 谷歌翻译
已证明深度神经网络容易受到对抗噪声的影响,从而促进了针对对抗攻击的防御。受到对抗噪声包含良好的特征的动机,并且对抗数据和自然数据之间的关系可以帮助推断自然数据并做出可靠的预测,在本文中,我们研究通过学习对抗性标签之间的过渡关系来建模对抗性噪声(即用于生成对抗数据的翻转标签)和天然标签(即自然数据的地面真实标签)。具体而言,我们引入了一个依赖实例的过渡矩阵来关联对抗标签和天然标签,可以将其无缝嵌入目标模型(使我们能够建模更强的自适应对手噪声)。经验评估表明,我们的方法可以有效提高对抗性的准确性。
translated by 谷歌翻译
最近对机器学习(ML)模型的攻击,例如逃避攻击,具有对抗性示例,并通过提取攻击窃取了一些模型,构成了几种安全性和隐私威胁。先前的工作建议使用对抗性训练从对抗性示例中保护模型,以逃避模型的分类并恶化其性能。但是,这种保护技术会影响模型的决策边界及其预测概率,因此可能会增加模型隐私风险。实际上,仅使用对模型预测输出的查询访问的恶意用户可以提取它并获得高智能和高保真替代模型。为了更大的提取,这些攻击利用了受害者模型的预测概率。实际上,所有先前关于提取攻击的工作都没有考虑到出于安全目的的培训过程中的变化。在本文中,我们提出了一个框架,以评估具有视觉数据集对对抗训练的模型的提取攻击。据我们所知,我们的工作是第一个进行此类评估的工作。通过一项广泛的实证研究,我们证明了受对抗训练的模型比在自然训练情况下获得的模型更容易受到提取攻击的影响。他们可以达到高达$ \ times1.2 $更高的准确性和同意,而疑问低于$ \ times0.75 $。我们还发现,与从自然训练的(即标准)模型中提取的DNN相比,从鲁棒模型中提取的对抗性鲁棒性能力可通过提取攻击(即从鲁棒模型提取的深神经网络(DNN)提取的深神网络(DNN))传递。
translated by 谷歌翻译