制作对抗性攻击的大多数方法都集中在具有单个主体对象的场景上(例如,来自Imagenet的图像)。另一方面,自然场景包括多个在语义上相关的主要对象。因此,探索设计攻击策略至关重要,这些攻击策略超出了在单对象场景上学习或攻击单对象受害者分类器。由于其固有的属性将扰动向未知模型的强大可传递性强,因此本文介绍了使用生成模型对多对象场景的对抗性攻击的第一种方法。为了代表输入场景中不同对象之间的关系,我们利用开源的预训练的视觉语言模型剪辑(对比语言图像 - 预训练),并动机利用语言中的编码语义来利用编码的语义空间与视觉空间一起。我们称这种攻击方法生成对抗性多对象场景攻击(GAMA)。 GAMA展示了剪辑模型作为攻击者的工具的实用性,以训练可强大的扰动发电机为多对象场景。使用联合图像文本功能来训练发电机,我们表明GAMA可以在各种攻击环境中制作有效的可转移扰动,以欺骗受害者分类器。例如,GAMA触发的错误分类比在黑框设置中的最新生成方法高出约16%,在黑框设置中,分类器体系结构和攻击者的数据分布都与受害者不同。我们的代码将很快公开提供。
translated by 谷歌翻译
对图像分类器的最新基于模型的攻击压倒性地集中在单对象(即单个主体对象)图像上。与此类设置不同,我们解决了一个更实用的问题,即使用多对象(即多个主导对象)图像生成对抗性扰动,因为它们代表了大多数真实世界场景。我们的目标是设计一种攻击策略,该策略可以通过利用此类图像中固有的本地贴片差异来从此类自然场景中学习(例如,对象上的局部贴片在“人”上的局部贴片与在交通场景中的对象`自行车'之间的差异)。我们的关键想法是:为了误解对抗性的多对象图像,图像中的每个本地贴片都会使受害者分类器感到困惑。基于此,我们提出了一种新颖的生成攻击(称为局部斑块差异或LPD攻击),其中新颖的对比损失函数使用上述多对象场景特征空间的局部差异来优化扰动生成器。通过各种受害者卷积神经网络的各种实验,我们表明我们的方法在不同的白色盒子和黑色盒子设置下进行评估时,我们的方法优于基线生成攻击,具有高度可转移的扰动。
translated by 谷歌翻译
近年来,图像分类器的BlackBox传输攻击已被广泛研究。相比之下,对对象探测器的转移攻击取得了很小的进展。对象探测器采用图像的整体视图,并检测一个对象(或缺乏)通常取决于场景中的其他对象。这使得这种探测器本质上的上下文感知和对抗的攻击比目标图像分类器更具挑战性。在本文中,我们提出了一种新的方法来为对象检测器生成上下文感知攻击。我们表明,通过使用对象及其相关位置的共同发生和尺寸作为上下文信息,我们可以成功地生成目标的错误分类攻击,该攻击比最先进的Blackbox对象探测器上实现更高的转移成功率。我们在帕斯卡VOC和MS Coco Datasets的各种对象探测器上测试我们的方法,与其他最先进的方法相比,性能提高了高达20美元的百分点。
translated by 谷歌翻译
Pretrained large-scale vision-language models like CLIP have exhibited strong generalization over unseen tasks. Yet imperceptible adversarial perturbations can significantly reduce CLIP's performance on new tasks. In this work, we identify and explore the problem of \emph{adapting large-scale models for zero-shot adversarial robustness}. We first identify two key factors during model adaption -- training losses and adaptation methods -- that affect the model's zero-shot adversarial robustness. We then propose a text-guided contrastive adversarial training loss, which aligns the text embeddings and the adversarial visual features with contrastive learning on a small set of training data. We apply this training loss to two adaption methods, model finetuning and visual prompt tuning. We find that visual prompt tuning is more effective in the absence of texts, while finetuning wins in the existence of text guidance. Overall, our approach significantly improves the zero-shot adversarial robustness over CLIP, seeing an average improvement of over 31 points over ImageNet and 15 zero-shot datasets. We hope this work can shed light on understanding the zero-shot adversarial robustness of large-scale models.
translated by 谷歌翻译
可转移的对抗性攻击优化了从验证的替代模型和已知标签空间中的对手,以欺骗未知的黑盒模型。因此,这些攻击受到有效的替代模型的可用性受到限制。在这项工作中,我们放宽了这一假设,并提出了对抗像素的恢复,作为一种自制的替代方案,可以在无标签和很少的数据样本的条件下从头开始训练有效的替代模型。我们的培训方法是基于一个最小目标的目标,该目标通过对抗目标减少过度拟合,从而为更概括的替代模型进行了优化。我们提出的攻击是对对抗性像素恢复的补充,并且独立于任何特定任务目标,因为它可以以自我监督的方式启动。我们成功地证明了我们对视觉变压器方法的对抗性可传递性以及卷积神经网络,用于分类,对象检测和视频分割的任务。我们的代码和预培训的代理模型可在以下网址找到:https://github.com/hashmatshadab/apr
translated by 谷歌翻译
Blackbox对抗攻击可以分为基于转移和基于查询的攻击。转移方法不需要受害模型的任何反馈,而是与基于查询的方法相比提供较低的成功率。查询攻击通常需要大量的成功查询。为了达到两种方法,最近的努力都试图将它们结合起来,但仍需要数百个查询才能获得高成功率(尤其是针对目标攻击)。在本文中,我们提出了一种通过替代集合搜索(基地)进行黑框攻击的新方法,该方法可以使用极少量的查询来生成非常成功的黑盒攻击。我们首先定义了扰动机,该机器通过在固定的替代模型上最小化加权损失函数来生成扰动的图像。为了为给定受害者模型生成攻击,我们使用扰动机产生的查询搜索损失函数中的权重。由于搜索空间的尺寸很小(与替代模型的数量相同),因此搜索需要少量查询。我们证明,与经过Imagenet训练的不同图像分类器(包括VGG-19,Densenet-121和Resnext-50)上的最新图像分类器相比,我们提出的方法的查询至少少了30倍,其查询至少少了30倍。特别是,我们的方法平均需要每张图像3个查询,以实现目标攻击的成功率超过90%,而对于非目标攻击的成功率超过99%,每个图像的1-2查询。我们的方法对Google Cloud Vision API也有效,并获得了91%的非目标攻击成功率,每张图像2.9查询。我们还表明,我们提出的方法生成的扰动是高度转移的,可以用于硬标签黑盒攻击。
translated by 谷歌翻译
视觉变形金刚(VITS)处理将图像输入图像作为通过自我关注的斑块;比卷积神经网络(CNNS)彻底不同的结构。这使得研究Vit模型的对抗特征空间及其可转移性有趣。特别是,我们观察到通过常规逆势攻击发现的对抗性模式,即使对于大型Vit模型,也表现出非常低的黑箱可转移性。但是,我们表明这种现象仅是由于不利用VITS的真实表示潜力的次优攻击程序。深紫色由多个块组成,具有一致的架构,包括自我关注和前馈层,其中每个块能够独立地产生类令牌。仅使用最后一类令牌(传统方法)制定攻击并不直接利用存储在早期令牌中的辨别信息,从而导致VITS的逆势转移性差。使用Vit模型的组成性质,我们通过引入特定于Vit模型结构的两种新策略来增强现有攻击的可转移性。 (i)自我合奏:我们提出了一种通过将单vit模型解剖到网络的集合来找到多种判别途径的方法。这允许在每个VIT块处明确地利用特定于类信息。 (ii)令牌改进:我们建议改进令牌,以进一步增强每种Vit障碍的歧视能力。我们的令牌细化系统地将类令牌系统组合在补丁令牌中保留的结构信息。在一个视觉变压器中发现的分类器的集合中应用于此类精炼令牌时,对抗攻击具有明显更高的可转移性。
translated by 谷歌翻译
现有的转移攻击方法通常假定攻击者知道黑盒受害者模型的训练集(例如标签集,输入大小),这通常是不现实的,因为在某些情况下,攻击者不知道此信息。在本文中,我们定义了一个通用的可转移攻击(GTA)问题,在该问题中,攻击者不知道此信息,并获得攻击可能来自未知数据集的任何随机遇到的图像。为了解决GTA问题,我们提出了一种新颖的图像分类橡皮擦(ICE),该图像分类(ICE)训练特定的攻击者从任意数据集中擦除任何图像的分类信息。几个数据集的实验表明,ICE在GTA上的现有转移攻击极大地胜过了转移攻击,并表明ICE使用类似纹理的噪声来扰动不同数据集的不同图像。此外,快速傅立叶变换分析表明,每个冰噪声中的主要成分是R,G和B图像通道的三个正弦波。受这个有趣的发现的启发,我们设计了一种新颖的正弦攻击方法(SA),以优化三个正弦波。实验表明,SA的性能与冰相当,表明这三个正弦波是有效的,足以打破GTA设置下的DNN。
translated by 谷歌翻译
最近,Vision-Language预训练的零拍图像分类已经表现出令人难以置信的成就,即该模型可以对任意类别进行分类而不看到该类别的其他注释图像。然而,目前尚不清楚如何在更广泛的视觉问题上进行零射识别,例如对象检测和语义分割。在本文中,我们通过在现成的预训练的视觉模型,即剪辑上建立零拍语义分割来定位零拍语义分割。很难因为语义分割和剪辑模型在不同的视觉粒度上执行,该语义分段处理在像素上时,而剪辑在图像上执行。为了解决处理粒度的差异,我们拒绝使用普遍的一级FCN基于FCN的框架,并倡导一个两级语义分割框架,其中第一阶段提取一个完全提取的掩模提案和第二阶段利用基于图像的剪辑模型在第一阶段生成的蒙版图像作物上执行零拍分类。我们的实验结果表明,这种简单的框架通过大型利润率超越了先前的最先进:+29.5 Hiou On Pascal VOC 2012 DataSet,+8.9 Hiou On Coco Stuff DataSet。凭借其简单性和强大的表现,我们希望本框架成为促进未来研究的基准。
translated by 谷歌翻译
由于缺乏对AI模型的安全性和鲁棒性的信任,近年来,深度学习模型(尤其是针对安全至关重要的系统)中的对抗性攻击正在越来越受到关注。然而,更原始的对抗性攻击可能是身体上不可行的,或者需要一些难以访问的资源,例如训练数据,这激发了斑块攻击的出现。在这项调查中,我们提供了全面的概述,以涵盖现有的对抗贴片攻击技术,旨在帮助感兴趣的研究人员迅速赶上该领域的进展。我们还讨论了针对对抗贴片的检测和防御措施的现有技术,旨在帮助社区更好地了解该领域及其在现实世界中的应用。
translated by 谷歌翻译
In the scenario of black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful adversarial perturbation based on query feedback under a query budget. Due to the limited feedback information, existing query-based black-box attack methods often require many queries for attacking each benign example. To reduce query cost, we propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability. Specifically, by treating the attack on each benign example as one task, we develop a meta-learning framework by training a meta-generator to produce perturbations conditioned on benign examples. When attacking a new benign example, the meta generator can be quickly fine-tuned based on the feedback information of the new task as well as a few historical attacks to produce effective perturbations. Moreover, since the meta-train procedure consumes many queries to learn a generalizable generator, we utilize model-level adversarial transferability to train the meta-generator on a white-box surrogate model, then transfer it to help the attack against the target model. The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance, which is verified by extensive experiments.
translated by 谷歌翻译
Adversarial training is an effective approach to make deep neural networks robust against adversarial attacks. Recently, different adversarial training defenses are proposed that not only maintain a high clean accuracy but also show significant robustness against popular and well studied adversarial attacks such as PGD. High adversarial robustness can also arise if an attack fails to find adversarial gradient directions, a phenomenon known as `gradient masking'. In this work, we analyse the effect of label smoothing on adversarial training as one of the potential causes of gradient masking. We then develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA). Our attack approach is based on a `match and deceive' loss that finds optimal adversarial directions through guidance from a surrogate model. Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size. Furthermore, our proposed G-PGA is generic, thus it can be combined with an ensemble attack strategy as we demonstrate for the case of Auto-Attack, leading to efficiency and convergence speed improvements. More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
translated by 谷歌翻译
There is a growing interest in developing unlearnable examples (UEs) against visual privacy leaks on the Internet. UEs are training samples added with invisible but unlearnable noise, which have been found can prevent unauthorized training of machine learning models. UEs typically are generated via a bilevel optimization framework with a surrogate model to remove (minimize) errors from the original samples, and then applied to protect the data against unknown target models. However, existing UE generation methods all rely on an ideal assumption called label-consistency, where the hackers and protectors are assumed to hold the same label for a given sample. In this work, we propose and promote a more practical label-agnostic setting, where the hackers may exploit the protected data quite differently from the protectors. E.g., a m-class unlearnable dataset held by the protector may be exploited by the hacker as a n-class dataset. Existing UE generation methods are rendered ineffective in this challenging setting. To tackle this challenge, we present a novel technique called Unlearnable Clusters (UCs) to generate label-agnostic unlearnable examples with cluster-wise perturbations. Furthermore, we propose to leverage VisionandLanguage Pre-trained Models (VLPMs) like CLIP as the surrogate model to improve the transferability of the crafted UCs to diverse domains. We empirically verify the effectiveness of our proposed approach under a variety of settings with different datasets, target models, and even commercial platforms Microsoft Azure and Baidu PaddlePaddle.
translated by 谷歌翻译
We introduce Patch Aligned Contrastive Learning (PACL), a modified compatibility function for CLIP's contrastive loss, intending to train an alignment between the patch tokens of the vision encoder and the CLS token of the text encoder. With such an alignment, a model can identify regions of an image corresponding to a given text input, and therefore transfer seamlessly to the task of open vocabulary semantic segmentation without requiring any segmentation annotations during training. Using pre-trained CLIP encoders with PACL, we are able to set the state-of-the-art on the task of open vocabulary zero-shot segmentation on 4 different segmentation benchmarks: Pascal VOC, Pascal Context, COCO Stuff and ADE20K. Furthermore, we show that PACL is also applicable to image-level predictions and when used with a CLIP backbone, provides a general improvement in zero-shot classification accuracy compared to CLIP, across a suite of 12 image classification datasets.
translated by 谷歌翻译
基于转移的对抗攻击可以评估黑框设置中的模型鲁棒性。几种方法表现出令人印象深刻的非目标转移性,但是,有效地产生有针对性的可转移性仍然具有挑战性。为此,我们开发了一个简单而有效的框架,以应用层次生成网络制作有针对性的基于转移的对抗性示例。特别是,我们有助于适应多级目标攻击的摊销设计。对Imagenet的广泛实验表明,我们的方法通过与现有方法相比,大幅度的余量提高了目标黑盒攻击的成功率 - 它的平均成功率为29.1 \%,而仅基于一个替代白盒的六种不同模型模型,大大优于最先进的基于梯度的攻击方法。此外,与基于梯度的方法相比,所提出的方法超出了数量级的效率也更有效。
translated by 谷歌翻译
基于深度神经网络(DNN)的智能信息(IOT)系统已被广泛部署在现实世界中。然而,发现DNNS易受对抗性示例的影响,这提高了人们对智能物联网系统的可靠性和安全性的担忧。测试和评估IOT系统的稳健性成为必要和必要。最近已经提出了各种攻击和策略,但效率问题仍未纠正。现有方法是计算地广泛或耗时,这在实践中不适用。在本文中,我们提出了一种称为攻击启发GaN(AI-GaN)的新框架,在有条件地产生对抗性实例。曾经接受过培训,可以有效地给予对抗扰动的输入图像和目标类。我们在白盒设置的不同数据集中应用AI-GaN,黑匣子设置和由最先进的防御保护的目标模型。通过广泛的实验,AI-GaN实现了高攻击成功率,优于现有方法,并显着降低了生成时间。此外,首次,AI-GaN成功地缩放到复杂的数据集。 Cifar-100和Imagenet,所有课程中的成功率约为90美元。
translated by 谷歌翻译
深度神经网络容易受到来自对抗性投入的攻击,并且最近,特洛伊木马误解或劫持模型的决定。我们通过探索有界抗逆性示例空间和生成的对抗网络内的自然输入空间来揭示有界面的对抗性实例 - 通用自然主义侵害贴片的兴趣类 - 我们呼叫TNT。现在,一个对手可以用一个自然主义的补丁来手臂自己,不太恶意,身体上可实现,高效 - 实现高攻击成功率和普遍性。 TNT是普遍的,因为在场景中的TNT中捕获的任何输入图像都将:i)误导网络(未确定的攻击);或ii)迫使网络进行恶意决定(有针对性的攻击)。现在,有趣的是,一个对抗性补丁攻击者有可能发挥更大的控制水平 - 选择一个独立,自然的贴片的能力,与被限制为嘈杂的扰动的触发器 - 到目前为止只有可能与特洛伊木马攻击方法有可能干扰模型建设过程,以嵌入风险发现的后门;但是,仍然意识到在物理世界中部署的补丁。通过对大型视觉分类任务的广泛实验,想象成在其整个验证集50,000张图像中进行评估,我们展示了TNT的现实威胁和攻击的稳健性。我们展示了攻击的概括,以创建比现有最先进的方法实现更高攻击成功率的补丁。我们的结果表明,攻击对不同的视觉分类任务(CIFAR-10,GTSRB,PUBFIG)和多个最先进的深神经网络,如WieredEnet50,Inception-V3和VGG-16。
translated by 谷歌翻译
对基于机器学习的分类器以及防御机制的对抗攻击已在单一标签分类问题的背景下广泛研究。在本文中,我们将注意力转移到多标签分类,其中关于所考虑的类别中的关系的域知识可以提供自然的方法来发现不连贯的预测,即与培训数据之外的对抗的例子相关的预测分配。我们在框架中探讨这种直觉,其中一阶逻辑知识被转换为约束并注入半监督的学习问题。在此设置中,约束分类器学会满足边际分布的域知识,并且可以自然地拒绝具有不连贯预测的样本。尽管我们的方法在训练期间没有利用任何对攻击的知识,但我们的实验分析令人惊讶地推出了域名知识约束可以有效地帮助检测对抗性示例,特别是如果攻击者未知这样的约束。
translated by 谷歌翻译
自我监督学习(SSL)是一个日益流行的ML范式,它训练模型以将复杂的输入转换为表示形式而不依赖于明确的标签。这些表示编码的相似性结构可以有效学习多个下游任务。最近,ML-AS-A-A-Service提供商已开始为推理API提供训练有素的SSL模型,该模型将用户输入转换为有用的费用表示。但是,训练这些模型及其对API的曝光涉及的高昂成本都使黑盒提取成为现实的安全威胁。因此,我们探索了对SSL的窃取攻击的模型。与输出标签的分类器上的传统模型提取不同,受害者模型在这里输出表示;与分类器的低维预测分数相比,这些表示的维度明显更高。我们构建了几次新颖的攻击,发现直接在受害者被盗的陈述上训练的方法是有效的,并且能够为下游模型高精度。然后,我们证明现有针对模型提取的防御能力不足,并且不容易改装为SSL的特异性。
translated by 谷歌翻译
这项工作是对对使用Dino训练的自我监督视觉变压器的对抗性攻击的鲁棒性进行的首次分析。首先,我们评估通过自学学历的特征是否比受到监督学习中出现的人更强大。然后,我们介绍在潜在空间中攻击的属性。最后,我们评估了三种著名的防御策略是否可以通过微调分类头来提高下游任务中的对抗性鲁棒性,即使考虑到有限的计算资源,也可以提供鲁棒性。这些防御策略是:对抗性训练,合奏对抗训练和专业网络的合奏。
translated by 谷歌翻译