普遍认为对抗培训是一种可靠的方法来改善对抗对抗攻击的模型稳健性。但是,在本文中,我们表明,当训练在一种类型的中毒数据时,对抗性培训也可以被愚蠢地具有灾难性行为,例如,$ <1 \%$强大的测试精度,以$> 90 \%$强大的训练准确度在CiFar-10数据集上。以前,在培训数据中,已经成功愚弄了标准培训($ 15.8 \%$标准测试精度,在CIFAR-10数据集中的标准训练准确度为99.9美元,但它们的中毒可以很容易地删除采用对抗性培训。因此,我们的目标是设计一种名为Advin的新型诱导噪声,这是一种不可动摇的培训数据中毒。 Advin不仅可以通过大幅度的利润率降低对抗性培训的鲁棒性,例如,从Cifar-10数据集每次为0.57 \%$ 0.57 \%$ 0.57 \%$ 0.1,但也有效地愚弄标准培训($ 13.1 \%$标准测试准确性$ 100 \%$标准培训准确度)。此外,否则可以应用于防止个人数据(如SELYIES)在没有授权的情况下剥削,无论是标准还是对抗性培训。
translated by 谷歌翻译
不分青红皂白血管中毒攻击,它为训练数据添加了不可察觉的扰动,以最大化训练有素的模型的测试错误,已成为一个时尚的主题,因为它们被认为能够防止未经授权使用数据。在这项工作中,我们调查为什么这些扰动原则上的工作。我们发现,当分配了相应样本的目标标签时,高级中毒攻击的扰动几乎是\ textBF {线性分离},因此可以为学习目标作为\ emph {快捷方式}工作。这个重要的人口财产尚未在之前揭幕。此外,我们进一步验证了线性可分性确实是中毒攻击的摩擦。我们将线性可分离数据综合为扰动,表明这种合成扰动与故意制作的攻击一样强大。我们的发现表明,\ emph {捷径学习}问题比以前认为深入学习依赖于快捷方式,即使它们与正常特征相混合,也会依赖于捷径。这一发现还建议预审训练的特征提取器会有效地禁用这些中毒攻击。
translated by 谷歌翻译
从社交媒体中刮擦的数据的流行率是获取数据集的一种手段,这导致人们对未经授权使用数据的关注日益严重。已经提出了数据中毒攻击是一种反对刮擦的堡垒,因为它们通过添加微小的,不可察觉的扰动来使数据“无法透视”。不幸的是,现有方法需要了解目标体系结构和完整的数据集,以便可以训练替代网络,其参数用于生成攻击。在这项工作中,我们引入了自回旋(AR)中毒,这种方法可以生成中毒的数据而无需访问更广泛的数据集。提出的AR扰动是通用的,可以在不同的数据集上应用,并且可以毒化不同的体系结构。与现有的未透视方法相比,我们的AR毒物更具抵抗力的防御能力,例如对抗性训练和强大的数据增强。我们的分析进一步洞悉了有效的数据毒物。
translated by 谷歌翻译
当有大量的计算资源可用时,AutoAttack(AA)是评估对抗性鲁棒性的最可靠方法。但是,高计算成本(例如,比项目梯度下降攻击的100倍)使AA对于具有有限计算资源的从业者来说是不可行的,并且也阻碍了AA在对抗培训中的应用(AT)。在本文中,我们提出了一种新颖的方法,即最小利润率(MM)攻击,以快速可靠地评估对抗性鲁棒性。与AA相比,我们的方法可实现可比的性能,但在广泛的实验中仅占计算时间的3%。我们方法的可靠性在于,我们使用两个目标之间的边缘来评估对抗性示例的质量,这些目标可以精确地识别最对抗性的示例。我们方法的计算效率在于有效的顺序目标排名选择(星形)方法,以确保MM攻击的成本与类数无关。 MM攻击开辟了一种评估对抗性鲁棒性的新方法,并提供了一种可行且可靠的方式来生成高质量的对抗示例。
translated by 谷歌翻译
由明确的反对派制作的对抗例子在机器学习中引起了重要的关注。然而,潜在虚假朋友带来的安全风险基本上被忽视了。在本文中,我们揭示了虚伪的例子的威胁 - 最初被错误分类但是虚假朋友扰乱的投入,以强迫正确的预测。虽然这种扰动的例子似乎是无害的,但我们首次指出,它们可能是恶意地用来隐瞒评估期间不合格(即,不如所需)模型的错误。一旦部署者信任虚伪的性能并在真实应用程序中应用“良好的”模型,即使在良性环境中也可能发生意外的失败。更严重的是,这种安全风险似乎是普遍存在的:我们发现许多类型的不合标准模型易受多个数据集的虚伪示例。此外,我们提供了第一次尝试,以称为虚伪风险的公制表征威胁,并试图通过一些对策来规避它。结果表明对策的有效性,即使在自适应稳健的培训之后,风险仍然是不可忽视的。
translated by 谷歌翻译
作为反对攻击的最有效的防御方法之一,对抗性训练倾向于学习包容性的决策边界,以提高深度学习模型的鲁棒性。但是,由于沿对抗方向的边缘的大幅度和不必要的增加,对抗性训练会在自然实例和对抗性示例之间引起严重的交叉,这不利于平衡稳健性和自然准确性之间的权衡。在本文中,我们提出了一种新颖的对抗训练计划,以在稳健性和自然准确性之间进行更好的权衡。它旨在学习一个中度包容的决策边界,这意味着决策边界下的自然示例的边缘是中等的。我们称此方案为中等边缘的对抗训练(MMAT),该方案生成更细粒度的对抗示例以减轻交叉问题。我们还利用了经过良好培训的教师模型的逻辑来指导我们的模型学习。最后,MMAT在Black-Box和White-Box攻击下都可以实现高自然的精度和鲁棒性。例如,在SVHN上,实现了最新的鲁棒性和自然精度。
translated by 谷歌翻译
Adversarial training based on the minimax formulation is necessary for obtaining adversarial robustness of trained models. However, it is conservative or even pessimistic so that it sometimes hurts the natural generalization. In this paper, we raise a fundamental question-do we have to trade off natural generalization for adversarial robustness? We argue that adversarial training is to employ confident adversarial data for updating the current model. We propose a novel formulation of friendly adversarial training (FAT): rather than employing most adversarial data maximizing the loss, we search for least adversarial data (i.e., friendly adversarial data) minimizing the loss, among the adversarial data that are confidently misclassified. Our novel formulation is easy to implement by just stopping the most adversarial data searching algorithms such as PGD (projected gradient descent) early, which we call early-stopped PGD. Theoretically, FAT is justified by an upper bound of the adversarial risk. Empirically, early-stopped PGD allows us to answer the earlier question negatively-adversarial robustness can indeed be achieved without compromising the natural generalization.* Equal contribution † Preliminary work was done during an internship at RIKEN AIP.
translated by 谷歌翻译
删除攻击旨在通过略微扰动正确标记的训练示例的特征来大幅恶化学习模型的测试准确性。通过将这种恶意攻击正式地找到特定$ \ infty $ -wassersein球中的最坏情况培训数据,我们表明最小化扰动数据的对抗性风险相当于优化原始数据上的自然风险的上限。这意味着对抗性培训可以作为防止妄想攻击的原则防御。因此,通过普遍训练可以很大程度地回收测试精度。为了进一步了解国防的内部机制,我们披露了对抗性培训可以通过防止学习者过于依赖于自然环境中的非鲁棒特征来抵制妄想扰动。最后,我们将我们的理论调查结果与一系列关于流行的基准数据集进行了补充,这表明防御能够承受六种不同的实际攻击。在面对令人难以闻名的对手时,理论和经验结果投票给逆势训练。
translated by 谷歌翻译
The study on improving the robustness of deep neural networks against adversarial examples grows rapidly in recent years. Among them, adversarial training is the most promising one, which flattens the input loss landscape (loss change with respect to input) via training on adversarially perturbed examples. However, how the widely used weight loss landscape (loss change with respect to weight) performs in adversarial training is rarely explored. In this paper, we investigate the weight loss landscape from a new perspective, and identify a clear correlation between the flatness of weight loss landscape and robust generalization gap. Several well-recognized adversarial training improvements, such as early stopping, designing new objective functions, or leveraging unlabeled data, all implicitly flatten the weight loss landscape. Based on these observations, we propose a simple yet effective Adversarial Weight Perturbation (AWP) to explicitly regularize the flatness of weight loss landscape, forming a double-perturbation mechanism in the adversarial training framework that adversarially perturbs both inputs and weights. Extensive experiments demonstrate that AWP indeed brings flatter weight loss landscape and can be easily incorporated into various existing adversarial training methods to further boost their adversarial robustness.
translated by 谷歌翻译
已证明深度神经网络容易受到对抗噪声的影响,从而促进了针对对抗攻击的防御。受到对抗噪声包含良好的特征的动机,并且对抗数据和自然数据之间的关系可以帮助推断自然数据并做出可靠的预测,在本文中,我们研究通过学习对抗性标签之间的过渡关系来建模对抗性噪声(即用于生成对抗数据的翻转标签)和天然标签(即自然数据的地面真实标签)。具体而言,我们引入了一个依赖实例的过渡矩阵来关联对抗标签和天然标签,可以将其无缝嵌入目标模型(使我们能够建模更强的自适应对手噪声)。经验评估表明,我们的方法可以有效提高对抗性的准确性。
translated by 谷歌翻译
为了应对对抗性实例的威胁,对抗性培训提供了一种有吸引力的选择,可以通过在线增强的对抗示例中的培训模型提高模型稳健性。然而,大多数现有的对抗训练方法通过强化对抗性示例来侧重于提高鲁棒的准确性,但忽略了天然数据和对抗性实施例之间的增加,导致自然精度急剧下降。为了维持自然和强大的准确性之间的权衡,我们从特征适应的角度缓解了转变,并提出了一种特征自适应对抗训练(FAAT),这些培训(FAAT)跨越自然数据和对抗示例优化类条件特征适应。具体而言,我们建议纳入一类条件鉴别者,以鼓励特征成为(1)类鉴别的和(2)不变导致对抗性攻击的变化。新型的FAAT框架通过在天然和对抗数据中产生具有类似分布的特征来实现自然和强大的准确性之间的权衡,并实现从类鉴别特征特征中受益的更高的整体鲁棒性。在各种数据集上的实验表明,FAAT产生更多辨别特征,并对最先进的方法表现有利。代码在https://github.com/visionflow/faat中获得。
translated by 谷歌翻译
对抗训练(AT)在防御对抗例子方面表现出色。最近的研究表明,示例对于AT期间模型的最终鲁棒性并不同样重要,即,所谓的硬示例可以攻击容易表现出比对最终鲁棒性的鲁棒示例更大的影响。因此,保证硬示例的鲁棒性对于改善模型的最终鲁棒性至关重要。但是,定义有效的启发式方法来寻找辛苦示例仍然很困难。在本文中,受到信息瓶颈(IB)原则的启发,我们发现了一个具有高度共同信息及其相关的潜在表示的例子,更有可能受到攻击。基于此观察,我们提出了一种新颖有效的对抗训练方法(Infoat)。鼓励Infoat找到具有高相互信息的示例,并有效利用它们以提高模型的最终鲁棒性。实验结果表明,与几种最先进的方法相比,Infoat在不同数据集和模型之间达到了最佳的鲁棒性。
translated by 谷歌翻译
到目前为止对抗训练是抵御对抗例子的最有效的策略。然而,由于每个训练步骤中的迭代对抗性攻击,它遭受了高的计算成本。最近的研究表明,通过随机初始化执行单步攻击,可以实现快速的对抗训练。然而,这种方法仍然落后于稳定性和模型稳健性的最先进的对手训练算法。在这项工作中,我们通过观察随机平滑的随机初始化来更好地优化内部最大化问题,对快速对抗培训进行新的理解。在这种新的视角之后,我们还提出了一种新的初始化策略,向后平滑,进一步提高单步强大培训方法的稳定性和模型稳健性。多个基准测试的实验表明,我们的方法在使用更少的训练时间(使用相同的培训计划时,使用更少的培训时间($ \ sim $ 3x改进)时,我们的方法达到了类似的模型稳健性。
translated by 谷歌翻译
There is a growing interest in developing unlearnable examples (UEs) against visual privacy leaks on the Internet. UEs are training samples added with invisible but unlearnable noise, which have been found can prevent unauthorized training of machine learning models. UEs typically are generated via a bilevel optimization framework with a surrogate model to remove (minimize) errors from the original samples, and then applied to protect the data against unknown target models. However, existing UE generation methods all rely on an ideal assumption called label-consistency, where the hackers and protectors are assumed to hold the same label for a given sample. In this work, we propose and promote a more practical label-agnostic setting, where the hackers may exploit the protected data quite differently from the protectors. E.g., a m-class unlearnable dataset held by the protector may be exploited by the hacker as a n-class dataset. Existing UE generation methods are rendered ineffective in this challenging setting. To tackle this challenge, we present a novel technique called Unlearnable Clusters (UCs) to generate label-agnostic unlearnable examples with cluster-wise perturbations. Furthermore, we propose to leverage VisionandLanguage Pre-trained Models (VLPMs) like CLIP as the surrogate model to improve the transferability of the crafted UCs to diverse domains. We empirically verify the effectiveness of our proposed approach under a variety of settings with different datasets, target models, and even commercial platforms Microsoft Azure and Baidu PaddlePaddle.
translated by 谷歌翻译
对抗性例子的现象说明了深神经网络最基本的漏洞之一。在推出这一固有的弱点的各种技术中,对抗性训练已成为学习健壮模型的最有效策略。通常,这是通过平衡强大和自然目标来实现的。在这项工作中,我们旨在通过执行域不变的功能表示,进一步优化鲁棒和标准准确性之间的权衡。我们提出了一种新的对抗训练方法,域不变的对手学习(DIAL),该方法学习了一个既健壮又不变的功能表示形式。拨盘使用自然域及其相应的对抗域上的域对抗神经网络(DANN)的变体。在源域由自然示例组成和目标域组成的情况下,是对抗性扰动的示例,我们的方法学习了一个被限制的特征表示,以免区分自然和对抗性示例,因此可以实现更强大的表示。拨盘是一种通用和模块化技术,可以轻松地将其纳入任何对抗训练方法中。我们的实验表明,将拨号纳入对抗训练过程中可以提高鲁棒性和标准精度。
translated by 谷歌翻译
对抗训练(AT)方法有效地防止对抗性攻击,但它们在不同阶级之间引入了严重的准确性和鲁棒性差异,称为强大的公平性问题。以前建议的公平健壮的学习(FRL)适应重新重量不同的类别以提高公平性。但是,表现良好的班级的表现降低了,导致表现强劲。在本文中,我们在对抗训练中观察到了两种不公平现象:在产生每个类别的对抗性示例(源级公平)和产生对抗性示例时(目标级公平)时产生对抗性示例的不​​同困难。从观察结果中,我们提出平衡对抗训练(BAT)来解决强大的公平问题。关于源阶级的公平性,我们调整了每个班级的攻击强度和困难,以在决策边界附近生成样本,以便更容易,更公平的模型学习;考虑到目标级公平,通过引入统一的分布约束,我们鼓励每个班级的对抗性示例生成过程都有公平的趋势。在多个数据集(CIFAR-10,CIFAR-100和IMAGENETTE)上进行的广泛实验表明,我们的方法可以显着超过其他基线,以减轻健壮的公平性问题(最坏的类精度为+5-10 \%)
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
对敌对训练(AT)作为最小值优化问题,可以有效地增强模型对对抗攻击的鲁棒性。现有的AT方法主要集中于操纵内部最大化,以生成质量对抗性变体或操纵外部最小化以设计有效的学习目标。然而,始终表现出与准确性和跨界混合物问题存在的鲁棒性的经验结果,这激发了我们研究某些标签随机性以使AT受益。首先,我们分别对AT的内部最大化和外部最小化进行彻底研究嘈杂的标签(NLS)注射,并获得有关NL注射益处AT何时的观察结果。其次,根据观察结果,我们提出了一种简单但有效的方法 - Noilin将NLS随机注入每个训练时期的训练数据,并在发生强大的过度拟合后动态提高NL注入率。从经验上讲,Noilin可以显着减轻AT的不良过度拟合的不良问题,甚至进一步改善了最新方法的概括。从哲学上讲,Noilin阐明了与NLS学习的新观点:NLS不应总是被视为有害的,即使在培训集中没有NLS的情况下,我们也可以考虑故意注射它们。代码可在https://github.com/zjfheart/noilin中找到。
translated by 谷歌翻译
对抗性训练(AT)是针对对抗分类系统的对抗性攻击的简单而有效的防御,这是基于增强训练设置的攻击,从而最大程度地提高了损失。但是,AT作为视频分类的辩护的有效性尚未得到彻底研究。我们的第一个贡献是表明,为视频生成最佳攻击需要仔细调整攻击参数,尤其是步骤大小。值得注意的是,我们证明最佳步长随攻击预算线性变化。我们的第二个贡献是表明,在训练时间使用较小(次优的)攻击预算会导致测试时的性能更加强大。根据这些发现,我们提出了三个防御攻击预算的攻击的防御。自适应AT的第一个技术是一种技术,该技术是从随着训练迭代进行的。第二个课程是一项技术,随着训练的迭代进行,攻击预算的增加。第三个生成的AT,与deno的生成对抗网络一起,以提高稳健的性能。 UCF101数据集上的实验表明,所提出的方法改善了针对多种攻击类型的对抗性鲁棒性。
translated by 谷歌翻译
深度神经网络(DNN)容易受到对抗性示例的影响,其中DNN由于含有不可察觉的扰动而被误导为虚假输出。对抗性训练是一种可靠有效的防御方法,可能会大大减少神经网络的脆弱性,并成为强大学习的事实上的标准。尽管许多最近的作品实践了以数据为中心的理念,例如如何生成更好的对抗性示例或使用生成模型来产生额外的培训数据,但我们回顾了模型本身,并从深度特征分布的角度重新审视对抗性的鲁棒性有见地的互补性。在本文中,我们建议分支正交性对抗训练(BORT)获得最先进的性能,仅使用原始数据集用于对抗训练。为了练习我们整合多个正交解决方案空间的设计思想,我们利用一个简单明了的多分支神经网络,可消除对抗性攻击而不会增加推理时间。我们启发提出相应的损耗函数,分支 - 正交丢失,以使多支出模型正交的每个溶液空间。我们分别在CIFAR-10,CIFAR-100和SVHN上评估了我们的方法,分别针对\ ell _ {\ infty}的规范触发尺寸\ epsilon = 8/255。进行了详尽的实验,以表明我们的方法超出了所有最新方法,而无需任何技巧。与所有不使用其他数据进行培训的方法相比,我们的模型在CIFAR-10和CIFAR-100上实现了67.3%和41.5%的鲁棒精度(在最先进的ART上提高了 +7.23%和 +9.07% )。我们还使用比我们的训练组胜过比我们的方法的表现要大得多。我们所有的模型和代码均可在https://github.com/huangd1999/bort上在线获得。
translated by 谷歌翻译