本文通过连续行动解决了非平稳环境和游戏中的政策学习。我们提出了一种无需重新格局样式的增强算法porl,而不是受到跟随规范化领导者(FTRL)和镜像下降(MD)更新的想法的启发,而不是经典的奖励最大化机制。我们证明,PORL具有最后的融合保证,这对于对抗和合作游戏很重要。实证研究表明,在控制任务的静态环境中,PORL的性能同样好,甚至比软crip-Critic(SAC)算法更好。在包括动态环境,对抗性训练和竞争性游戏在内的非机构环境中,PORL在更好的最终政策表现和更稳定的培训过程中都优于SAC。
translated by 谷歌翻译
最大化马尔可夫和固定的累积奖励函数,即在国家行动对和时间独立于时间上定义,足以在马尔可夫决策过程(MDP)中捕获多种目标。但是,并非所有目标都可以以这种方式捕获。在本文中,我们研究了凸MDP,其中目标表示为固定分布的凸功能,并表明它们不能使用固定奖励函数进行配制。凸MDP将标准加强学习(RL)问题提出概括为一个更大的框架,其中包括许多受监督和无监督的RL问题,例如学徒学习,约束MDP和所谓的“纯探索”。我们的方法是使用Fenchel二重性将凸MDP问题重新将凸MDP问题重新制定为涉及政策和成本(负奖励)的最小游戏。我们提出了一个用于解决此问题的元偏金属,并表明它统一了文献中许多现有的算法。
translated by 谷歌翻译
考虑到人类行为的例子,我们考虑在多种代理决策问题中建立强大但人类的政策的任务。仿制学习在预测人类行为方面有效,但可能与专家人类的实力不符,而自助学习和搜索技术(例如,alphakero)导致强大的性能,但可能会产生难以理解和协调的政策。我们在国际象棋中显示,并通过应用Monte Carlo树搜索产生具有更高人为预测准确性的策略并比仿制政策更强大的kl差异,基于kl发散的正规化搜索策略。然后我们介绍一种新的遗憾最小化算法,该算法基于来自模仿的政策的KL发散规范,并显示将该算法应用于无按压外交产生的策略,使得在基本上同时保持与模仿学习相同的人类预测准确性的策略更强。
translated by 谷歌翻译
在学徒学习(AL)中,我们在没有获得成本函数的情况下给予马尔可夫决策过程(MDP)。相反,我们观察由根据某些政策执行的专家采样的轨迹。目标是找到一个与专家对某些预定义的成本函数的性能相匹配的策略。我们介绍了AL的在线变体(在线学徒学习; OAL),其中代理商预计与环境相互作用,在与环境互动的同时相互表现。我们表明,通过组合两名镜面血缘无遗憾的算法可以有效地解决了OAL问题:一个用于策略优化,另一个用于学习最坏情况的成本。通过采用乐观的探索,我们使用$ O(\ SQRT {k})$后悔派生算法,其中$ k $是与MDP的交互数量以及额外的线性错误术语,其取决于专家轨迹的数量可用的。重要的是,我们的算法避免了在每次迭代时求解MDP的需要,与先前的AL方法相比,更实用。最后,我们实现了我们算法的深层变体,该算法与Gail \ Cite {Ho2016Generative}共享了一些相似之处,但在鉴别者被替换为OAL问题的成本。我们的模拟表明OAL在高维控制问题中表现良好。
translated by 谷歌翻译
本文研究了用于多机构增强学习的政策优化算法。我们首先在全信息设置中提出了针对两人零和零和马尔可夫游戏的算法框架,其中每次迭代均使用一个策略更新,使用某个矩阵游戏算法在每个状态下进行策略更新,并带有一个带有特定的值更新步骤学习率。该框架统一了许多现有和新的政策优化算法。我们表明,只要矩阵游戏算法在每种状态下,该算法的州平均策略会收敛到游戏的近似NASH平衡(NE),只要矩阵游戏算法在每个状态下都具有低称重的遗憾价值更新。接下来,我们证明,该框架与每个状态(和平滑值更新)的乐观跟踪定制领导者(oftrl)算法可以找到$ \ Mathcal {\ widetilde {o}}(t^{ - 5 /6})$ t $迭代中的$近似NE,并且具有稍微修改的值更新规则的类似算法可实现更快的$ \ Mathcal {\ widetilde {o}}}}(t^{ - 1})$收敛率。这些改进了当前最佳$ \ Mathcal {\ widetilde {o}}}(t^{ - 1/2})$对称策略优化类型算法的速率。我们还将此算法扩展到多玩家通用-SUM Markov游戏,并显示$ \ MATHCAL {\ widetilde {o}}}(t^{ - 3/4})$收敛率与粗相关均衡(CCE)。最后,我们提供了一个数值示例来验证我们的理论并研究平滑价值更新的重要性,并发现使用“渴望”的价值更新(等同于独立的自然策略梯度算法)也可能会大大减慢收敛性,即使在$ h = 2 $层的简单游戏。
translated by 谷歌翻译
在许多顺序决策问题(例如,机器人控制,游戏播放,顺序预测),人类或专家数据可用包含有关任务的有用信息。然而,来自少量专家数据的模仿学习(IL)可能在具有复杂动态的高维环境中具有挑战性。行为克隆是一种简单的方法,由于其简单的实现和稳定的收敛而被广泛使用,但不利用涉及环境动态的任何信息。由于对奖励和政策近似器或偏差,高方差梯度估计器,难以在实践中难以在实践中努力训练的许多现有方法。我们介绍了一种用于动态感知IL的方法,它通过学习单个Q函数来避免对抗训练,隐含地代表奖励和策略。在标准基准测试中,隐式学习的奖励显示与地面真实奖励的高正面相关性,说明我们的方法也可以用于逆钢筋学习(IRL)。我们的方法,逆软Q学习(IQ-Learn)获得了最先进的结果,在离线和在线模仿学习设置中,显着优于现有的现有方法,这些方法都在所需的环境交互和高维空间中的可扩展性中,通常超过3倍。
translated by 谷歌翻译
熵正则化是增强学习(RL)的流行方法。尽管它具有许多优势,但它改变了原始马尔可夫决策过程(MDP)的RL目标。尽管已经提出了差异正则化来解决这个问题,但不能微不足道地应用于合作的多代理增强学习(MARL)。在本文中,我们研究了合作MAL中的差异正则化,并提出了一种新型的非政策合作MARL框架,差异性的多代理参与者 - 参与者(DMAC)。从理论上讲,我们得出了DMAC的更新规则,该规则自然存在,并保证了原始MDP和Divergence regullatized MDP的单调政策改进和收敛。我们还给出了原始MDP中融合策略和最佳策略之间的差异。 DMAC是一个灵活的框架,可以与许多现有的MARL算法结合使用。从经验上讲,我们在教学随机游戏和Starcraft Multi-Agent挑战中评估了DMAC,并表明DMAC显着提高了现有的MARL算法的性能。
translated by 谷歌翻译
具有很多玩家的非合作和合作游戏具有许多应用程序,但是当玩家数量增加时,通常仍然很棘手。由Lasry和Lions以及Huang,Caines和Malham \'E引入的,平均野外运动会(MFGS)依靠平均场外近似值,以使玩家数量可以成长为无穷大。解决这些游戏的传统方法通常依赖于以完全了解模型的了解来求解部分或随机微分方程。最近,增强学习(RL)似乎有望解决复杂问题。通过组合MFGS和RL,我们希望在人口规模和环境复杂性方面能够大规模解决游戏。在这项调查中,我们回顾了有关学习MFG中NASH均衡的最新文献。我们首先确定最常见的设置(静态,固定和进化)。然后,我们为经典迭代方法(基于最佳响应计算或策略评估)提供了一个通用框架,以确切的方式解决MFG。在这些算法和与马尔可夫决策过程的联系的基础上,我们解释了如何使用RL以无模型的方式学习MFG解决方案。最后,我们在基准问题上介绍了数值插图,并以某些视角得出结论。
translated by 谷歌翻译
深度加强学习(DRL)的框架为连续决策提供了强大而广泛适用的数学形式化。本文提出了一种新的DRL框架,称为\ emph {$ f $-diveliventcence加强学习(frl)}。在FRL中,通过最大限度地减少学习政策和采样策略之间的$ F $同时执行策略评估和政策改进阶段,这与旨在最大化预期累计奖励的传统DRL算法不同。理论上,我们证明最小化此类$ F $ - 可以使学习政策会聚到最佳政策。此外,我们将FRL框架中的培训代理程序转换为通过Fenchel Concugate的特定$ F $函数转换为鞍点优化问题,这构成了政策评估和政策改进的新方法。通过数学证据和经验评估,我们证明FRL框架有两个优点:(1)政策评估和政策改进过程同时进行,(2)高估价值函数的问题自然而缓解。为了评估FRL框架的有效性,我们对Atari 2600的视频游戏进行实验,并显示在FRL框架中培训的代理匹配或超越基线DRL算法。
translated by 谷歌翻译
本文提出了用于学习两人零和马尔可夫游戏的小说,端到端的深钢筋学习算法。我们的目标是找到NASH平衡政策,这些策略不受对抗对手的剥削。本文与以前在广泛形式的游戏中找到NASH平衡的努力不同,这些游戏具有树结构的过渡动态和离散的状态空间,本文着重于具有一般过渡动态和连续状态空间的马尔可夫游戏。我们提出了(1)NASH DQN算法,该算法将DQN与nash finding subroutine集成在一起的联合价值函数; (2)NASH DQN利用算法,该算法还采用了指导代理商探索的剥削者。我们的算法是理论算法的实用变体,这些变体可以保证在基本表格设置中融合到NASH平衡。对表格示例和两个玩家Atari游戏的实验评估证明了针对对抗对手的拟议算法的鲁棒性,以及对现有方法的优势性能。
translated by 谷歌翻译
已经引入了平均野外游戏(MFG),以有效地近似战略代理人。最近,MFG中学习平衡的问题已经获得了动力,尤其是使用无模型增强学习(RL)方法。使用RL进一步扩展的一个限制因素是,解决MFG的现有算法需要混合近似数量的策略或$ Q $价值。在非线性函数近似的情况下,这远非微不足道的属性,例如,例如神经网络。我们建议解决这一缺点的两种方法。第一个从历史数据蒸馏到神经网络的混合策略,将其应用于虚拟游戏算法。第二种是基于正规化的在线混合方法,不需要记忆历史数据或以前的估计。它用于扩展在线镜下降。我们从数值上证明,这些方法有效地可以使用深RL算法来求解各种MFG。此外,我们表明这些方法的表现优于文献中的SOTA基准。
translated by 谷歌翻译
尽管固定环境中的单一机构政策优化最近在增强学习社区中引起了很多研究的关注,但是当在潜在竞争性的环境中有多个代理商在玩耍时,从理论上讲,少得多。我们通过提出和分析具有结构化但未知过渡的零和Markov游戏的新的虚拟游戏策略优化算法来向前迈进。我们考虑两类的过渡结构:分类的独立过渡和单个控制器过渡。对于这两种情况,我们都证明了紧密的$ \ widetilde {\ Mathcal {o}}(\ sqrt {k})$遗憾的范围在$ k $ eviepodes之后,在两种代理竞争的游戏场景中。每个代理人的遗憾是针对潜在的对抗对手的衡量,他们在观察完整的政策序列后可以在事后选择一个最佳政策。我们的算法在非平稳环境中同时进行政策优化的范围下,具有上置信度结合(UCB)的乐观和虚拟游戏的结合。当两个玩家都采用所提出的算法时,他们的总体最优差距为$ \ widetilde {\ Mathcal {o}}(\ sqrt {k})$。
translated by 谷歌翻译
我们为模仿学习提供了一个新的框架 - 将模仿视为政策和奖励之间的基于两人排名的游戏。在这个游戏中,奖励代理商学会了满足行为之间的成对性能排名,而政策代理人则学会最大程度地提高这种奖励。在模仿学习中,很难获得近乎最佳的专家数据,即使在无限数据的限制下,也不能像偏好一样对轨迹进行总订购。另一方面,仅从偏好中学习就具有挑战性,因为需要大量偏好来推断高维奖励功能,尽管偏好数据通常比专家演示更容易收集。经典的逆增强学习(IRL)的配方从专家演示中学习,但没有提供从离线偏好中纳入学习的机制,反之亦然。我们将提出的排名游戏框架实例化,并具有新颖的排名损失,从而使算法可以同时从专家演示和偏好中学习,从而获得两种方式的优势。我们的实验表明,所提出的方法可实现最新的样本效率,并可以从观察(LFO)设置中学习以前无法解决的任务。
translated by 谷歌翻译
我们研究了马尔可夫潜在游戏(MPG)中多机构增强学习(RL)问题的策略梯度方法的全球非反应收敛属性。要学习MPG的NASH平衡,在该MPG中,状态空间的大小和/或玩家数量可能非常大,我们建议使用TANDEM所有玩家运行的新的独立政策梯度算法。当梯度评估中没有不确定性时,我们表明我们的算法找到了$ \ epsilon $ -NASH平衡,$ o(1/\ epsilon^2)$迭代复杂性并不明确取决于状态空间大小。如果没有确切的梯度,我们建立$ O(1/\ epsilon^5)$样品复杂度在潜在的无限大型状态空间中,用于利用函数近似的基于样本的算法。此外,我们确定了一类独立的政策梯度算法,这些算法都可以融合零和马尔可夫游戏和马尔可夫合作游戏,并与玩家不喜欢玩的游戏类型。最后,我们提供了计算实验来证实理论发展的优点和有效性。
translated by 谷歌翻译
多代理系统的一个主要挑战是,系统的复杂性随着代理的数量以及其动作空间的规模而显着增长,在现实世界中,这是典型的,例如自动驾驶汽车,机器人团队,网络路由等。因此,正是在设计分散或独立算法的迫在眉睫的需求中,其中每个代理的更新仅基于它们的本地观察结果,而无需引入复杂的通信/协调机制。在这项工作中,我们研究了潜在游戏的独立熵规范化自然策略梯度(NPG)方法的有限时间收敛,在这些方法中,由于单方面偏差而导致的代理商效用函数的差异与普通潜在功能完全匹配。提出的熵注册的NPG方法使每个代理都可以根据自己的回报部署对称,分散和乘法更新。我们表明,所提出的方法以均方根速率收敛到定量响应平衡(QRE)(QRE)(QRE) - 与熵调制的游戏的平衡 - 与动作空间的大小无关,并且最多地与数字一起增长代理商。有吸引力的是,收敛率进一步与相同利益游戏的重要特殊情况的代理数量独立,从而导致了第一种以无维率收敛的方法。我们的方法可以用作平滑技术,以找到未注册问题的近似NASH平衡(NE),而无需假设固定策略是隔离的。
translated by 谷歌翻译
主导的行动是自然的(也许是最简单的)多代理概括的子最优动作,如标准单代理决策中的那样。因此类似于标准强盗学习,多代理系统中的基本学习问题是如果他们只能观察到他们播放动作的回报的嘈杂的强盗反馈,那么代理商可以学会有效地消除所有主导的动作。令人惊讶的是,尽管有一个看似简单的任务,我们展示了一个相当负面的结果;也就是说,标准没有遗憾的算法 - 包括整个双平均算法的家庭 - 可呈指数级地取消逐渐消除所有主导的行动。此外,具有较强的交换后悔的算法也遭受了类似的指数低效率。为了克服这些障碍,我们开发了一种新的算法,调整EXP3,历史奖励减少(exp3-DH); Exp3-DH逐渐忘记仔细量身定制的速率。我们证明,当所有代理运行Exp3-DH(A.K.A.,在多代理学习中自行发行)时,所有主导的行动都可以在多项多轮内迭代地消除。我们的实验结果进一步证明了Exp3-DH的效率,即使是那些专门用于在游戏中学习的最先进的强盗算法,也无法有效地消除所有主导的行动。
translated by 谷歌翻译
Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods to complex, real-world domains. In this paper, we propose soft actor-critic, an offpolicy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as Q-learning methods. By combining off-policy updates with a stable stochastic actor-critic formulation, our method achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving very similar performance across different random seeds.
translated by 谷歌翻译
Zero-sum Markov Games (MGs) has been an efficient framework for multi-agent systems and robust control, wherein a minimax problem is constructed to solve the equilibrium policies. At present, this formulation is well studied under tabular settings wherein the maximum operator is primarily and exactly solved to calculate the worst-case value function. However, it is non-trivial to extend such methods to handle complex tasks, as finding the maximum over large-scale action spaces is usually cumbersome. In this paper, we propose the smoothing policy iteration (SPI) algorithm to solve the zero-sum MGs approximately, where the maximum operator is replaced by the weighted LogSumExp (WLSE) function to obtain the nearly optimal equilibrium policies. Specially, the adversarial policy is served as the weight function to enable an efficient sampling over action spaces.We also prove the convergence of SPI and analyze its approximation error in $\infty -$norm based on the contraction mapping theorem. Besides, we propose a model-based algorithm called Smooth adversarial Actor-critic (SaAC) by extending SPI with the function approximations. The target value related to WLSE function is evaluated by the sampled trajectories and then mean square error is constructed to optimize the value function, and the gradient-ascent-descent methods are adopted to optimize the protagonist and adversarial policies jointly. In addition, we incorporate the reparameterization technique in model-based gradient back-propagation to prevent the gradient vanishing due to sampling from the stochastic policies. We verify our algorithm in both tabular and function approximation settings. Results show that SPI can approximate the worst-case value function with a high accuracy and SaAC can stabilize the training process and improve the adversarial robustness in a large margin.
translated by 谷歌翻译
我们考虑了一个$ n $ - 玩家随机游戏的子类,其中玩家在通过收益功能耦合时拥有自己的内部状态/动作空间。假定玩家的内部链是由独立过渡概率驱动的。此外,玩家只能收到其回报的实现,而不是实际功能,并且无法观察彼此的状态/行动。根据一些关于收益功能结构的假设,我们基于双重平均和双镜下降开发有效的学习算法,该算法几乎可以肯定地融合或预期$ \ epsilon $ nash $ nash平衡策略。特别是,我们根据游戏参数的多项式划分的迭代数量得出了上限,以实现$ \ epsilon $ -NASH平衡策略。除了马尔可夫潜在的游戏和线性季节随机游戏外,这项工作还提供了$ n $ - 玩家随机游戏的另一个子类,这些游戏可证明可以允许多项式学习算法找到其$ \ epsilon $ nash平衡策略。
translated by 谷歌翻译
安全的加强学习(RL)旨在学习在将其部署到关键安全应用程序中之前满足某些约束的政策。以前的原始双重风格方法遭受了不稳定性问题的困扰,并且缺乏最佳保证。本文从概率推断的角度克服了问题。我们在政策学习过程中介绍了一种新颖的期望最大化方法来自然纳入约束:1)在凸优化(E-step)后,可以以封闭形式计算可证明的最佳非参数变异分布; 2)基于最佳变异分布(M-step),在信任区域内改进了策略参数。提出的算法将安全的RL问题分解为凸优化阶段和监督学习阶段,从而产生了更稳定的培训性能。对连续机器人任务进行的广泛实验表明,所提出的方法比基线获得了更好的约束满意度和更好的样品效率。该代码可在https://github.com/liuzuxin/cvpo-safe-rl上找到。
translated by 谷歌翻译