光谱分析是一种强大的工具,将任何功能分解成更简单的部件。在机器学习中,Mercer的定理概括了这个想法,为任何内核和输入分布提供了增加频率的自然基础。最近,几种作品通过神经切线内核的框架将此分析扩展到深度神经网络。在这项工作中,我们分析了深度神经网络的层面频谱偏压,并将其与不同层的贡献相关联在给定的目标函数的泛化误差减少中的贡献。我们利用Hermite多项式和球面谐波的性质来证明初始层朝着单位球体上定义的高频函数呈现较大偏差。我们进一步提供了验证我们在深神经网络的高维数据集中的理论的实证结果。
translated by 谷歌翻译
神经切线内核(NTK)是分析神经网络及其泛化界限的训练动力学的强大工具。关于NTK的研究已致力于典型的神经网络体系结构,但对于Hadamard产品(NNS-HP)的神经网络不完整,例如StyleGAN和多项式神经网络。在这项工作中,我们为特殊类别的NNS-HP(即多项式神经网络)得出了有限宽度的NTK公式。我们证明了它们与关联的NTK与内核回归预测变量的等效性,该预测扩大了NTK的应用范围。根据我们的结果,我们阐明了针对外推和光谱偏置,PNN在标准神经网络上的分离。我们的两个关键见解是,与标准神经网络相比,PNN能够在外推方案中拟合更复杂的功能,并承认相应NTK的特征值衰减较慢。此外,我们的理论结果可以扩展到其他类型的NNS-HP,从而扩大了我们工作的范围。我们的经验结果验证了更广泛的NNS-HP类别的分离,这为对神经体系结构有了更深入的理解提供了良好的理由。
translated by 谷歌翻译
过度参数化神经网络(NNS)的小概括误差可以通过频率偏见现象来部分解释,在频率偏置现象中,基于梯度的算法将低频失误最小化,然后再减少高频残差。使用神经切线内核(NTK),可以为训练提供理论上严格的分析,其中数据是从恒定或分段构剂概率密度绘制的数据。由于大多数训练数据集不是从此类分布中汲取的,因此我们使用NTK模型和数据依赖性的正交规则来理论上量化NN训练的频率偏差,给定完全不均匀的数据。通过用精心选择的Sobolev规范替换损失函数,我们可以进一步扩大,抑制,平衡或逆转NN训练中的内在频率偏差。
translated by 谷歌翻译
We study the training and generalization of deep neural networks (DNNs) in the overparameterized regime, where the network width (i.e., number of hidden nodes per layer) is much larger than the number of training data points. We show that, the expected 0-1 loss of a wide enough ReLU network trained with stochastic gradient descent (SGD) and random initialization can be bounded by the training loss of a random feature model induced by the network gradient at initialization, which we call a neural tangent random feature (NTRF) model. For data distributions that can be classified by NTRF model with sufficiently small error, our result yields a generalization error bound in the order of r Opn ´1{2 q that is independent of the network width. Our result is more general and sharper than many existing generalization error bounds for over-parameterized neural networks. In addition, we establish a strong connection between our generalization error bound and the neural tangent kernel (NTK) proposed in recent work.
translated by 谷歌翻译
通过建立神经网络和内核方法之间的联系,无限宽度极限阐明了深度学习的概括和优化方面。尽管它们的重要性,但这些内核方法的实用性在大规模学习设置中受到限制,因为它们(超)二次运行时和内存复杂性。此外,大多数先前关于神经内核的作品都集中在relu激活上,这主要是由于其受欢迎程度,但这也是由于很难计算此类内核来进行一般激活。在这项工作中,我们通过提供进行一般激活的方法来克服此类困难。首先,我们编译和扩展激活功能的列表,该函数允许精确的双重激活表达式计算神经内核。当确切的计算未知时,我们提出有效近似它们的方法。我们提出了一种快速的素描方法,该方法近似于任何多种多层神经网络高斯过程(NNGP)内核和神经切线核(NTK)矩阵,以实现广泛的激活功能,这超出了常见的经过分析的RELU激活。这是通过显示如何使用任何所需激活函​​数的截短的Hermite膨胀来近似神经内核来完成的。虽然大多数先前的工作都需要单位球体上的数据点,但我们的方法不受此类限制的影响,并且适用于$ \ Mathbb {r}^d $中的任何点数据集。此外,我们为NNGP和NTK矩阵提供了一个子空间嵌入,具有接近输入的距离运行时和接近最佳的目标尺寸,该目标尺寸适用于任何\ EMPH {均质}双重激活功能,具有快速收敛的Taylor膨胀。从经验上讲,关于精确的卷积NTK(CNTK)计算,我们的方法可实现$ 106 \ times $速度,用于在CIFAR-10数据集上的5层默特网络的近似CNTK。
translated by 谷歌翻译
Neural networks are known to be a class of highly expressive functions able to fit even random inputoutput mappings with 100% accuracy. In this work we present properties of neural networks that complement this aspect of expressivity. By using tools from Fourier analysis, we highlight a learning bias of deep networks towards low frequency functions -i.e. functions that vary globally without local fluctuations -which manifests itself as a frequency-dependent learning speed. Intuitively, this property is in line with the observation that over-parameterized networks prioritize learning simple patterns that generalize across data samples. We also investigate the role of the shape of the data manifold by presenting empirical and theoretical evidence that, somewhat counter-intuitively, learning higher frequencies gets easier with increasing manifold complexity.
translated by 谷歌翻译
通过梯度流优化平均平衡误差,研究了功能空间中神经网络的动态。我们认为,在underParameterized制度中,网络了解由与其特征值对应的率的神经切线内核(NTK)确定的整体运算符$ t_ {k ^ \ infty} $的特征功能。例如,对于SPENTE $ S ^ {D-1} $和旋转不变的权重分配的均匀分布式数据,$ t_ {k ^ \ infty} $的特征函数是球形谐波。我们的结果可以理解为描述interparameterized制度中的光谱偏压。证据使用“阻尼偏差”的概念,其中NTK物质对具有由于阻尼因子的发生而具有大特征值的特征的偏差。除了下公共条例的制度之外,阻尼偏差可用于跟踪过度分辨率设置中经验风险的动态,允许我们在文献中延长某些结果。我们得出结论,阻尼偏差在优化平方误差时提供了动态的简单和统一的视角。
translated by 谷歌翻译
神经网络是通用函数近似器,尽管过度参数过多,但已知可以很好地概括。我们从神经网络的光谱偏置的角度研究了这种现象。我们的贡献是两个方面。首先,我们通过利用与有限元方法理论的联系来为Relu神经网络的光谱偏置提供理论解释。其次,基于该理论,我们预测将激活函数切换到分段线性B-Spline(即HAT函数)将消除这种频谱偏置,我们在各种设置中进行经验验证。我们的经验研究还表明,使用随机梯度下降和ADAM对具有HAT激活功能的神经网络进行了更快的训练。结合以前的工作表明,HAT激活功能还提高了图像分类任务的概括精度,这表明使用HAT激活在某些问题上具有重大优势。
translated by 谷歌翻译
我们为相互作用粒子系统的平均场方程中相互作用内核的可识别性提供了完整的表征。关键是识别概率二次损耗功能具有独特的最小化器的功能空间。我们考虑两个数据自适应$ l^2 $空间,一个带有Lebesgue度量,另一个具有均值固有的探索度量。对于每个$ l^2 $空间,损耗功能的Fr \'echet导数会导致半阳性的积分运算符,因此,可识别性在集成运算符的非零特征值和功能空间的特征空间上保留在特征空间上识别是与积分运算符相关的RKHS的$ l^2 $ clublosure。此外,仅当整体操作员严格呈正时,可识别性在$ l^2 $空间上。因此,逆问题是错误的,需要正则化。在截断的SVD正则化的背景下,我们从数值上证明了加权$ l^2 $空间比未加权的$ l^2 $空间更可取,因为它会导致更准确的正则化估计器。
translated by 谷歌翻译
对于某种缩放的随机梯度下降(SGD)的初始化,已经显示宽神经网络(NN)通过再现核Hilbert空间(RKHS)方法来近似近似。最近的实证工作表明,对于某些分类任务,RKHS方法可以替换NNS而无需大量的性能损失。另一方面,已知两层NNS编码比RKHS更丰富的平滑度等级,并且我们知道SGD培训的NN可提供的特殊示例可提供胜过RKHS。即使在宽网络限制中,这也是如此,对于初始化的不同缩放。我们如何调和上述索赔?任务是否优于RKHS?如果协变量近在各向同性,RKHS方法患有维度的诅咒,而NNS可以通过学习最佳的低维表示来克服它。在这里,我们表明,如果协变量显示与目标函数相同的低维结构,则这种维度的这种诅咒变得更温和,并且我们精确地表征了这个权衡。在这些结果上建立,我们提出了可以在早期工作中观察到的统一框架中捕获的尖刺协变量模型。我们假设这种潜伏的低维结构存在于图像分类中。我们通过表明训练分配的特定扰动降低了比NN更大的更显高度显着的训练方法的特定扰动来测试这些假设。
translated by 谷歌翻译
尽管他们成功了,但了解卷积神经网络(CNN)如何有效地学习高维功能仍然是一个基本挑战。一个普遍的看法是,这些模型利用自然数据(例如图像)的组成和分层结构。然而,我们对这种结构如何影响性能,缺乏定量的理解,例如训练样本数量的概括误差的衰减率。在本文中,我们研究了内核制度中的深入CNN:i)我们证明了相应的内核及其渐近学的光谱继承了网络的层次结构; ii)我们使用概括范围来证明深CNN适应目标函数的空间尺度; iii)我们通过计算教师学生环境中误差的衰减率来说明这一结果,在教师学生的设置中,对另一个具有随机发射参数的深CNN的输出进行了深入的CNN训练。我们发现,如果教师函数取决于输入变量的某些低维基集,则速率由这些子集的有效维度控制。相反,如果教师函数取决于整个输入变量,则错误率与输入维度成反比。有趣的是,这意味着尽管具有层次结构,但深CNN产生的功能太丰富了,无法在高维度上有效地学习。
translated by 谷歌翻译
人们普遍认为,深网的成功在于他们学习数据功能的有意义表示的能力。然而,了解该功能学习何时以及如何提高性能仍然是一个挑战:例如,它对经过对图像进行分类的现代体系结构有益,而对于在相同数据上针对同一任务培训的完全连接的网络是有害的。在这里,我们提出了有关此难题的解释,表明特征学习可以比懒惰训练(通过随机特征内核或NTK)更糟糕,因为前者可以导致较少的神经表示。尽管已知稀疏性对于学习各向异性数据是必不可少的,但是当目标函数沿输入空间的某些方向恒定或平滑时,这是有害的。我们在两个设置中说明了这种现象:(i)在D维单元球体上的高斯随机函数的回归,以及(ii)图像基准数据集的分类。对于(i),我们通过训练点数来计算概括误差的缩放率,并证明即使输入空间的尺寸很大,不学习特征的方法也可以更好地推广。对于(ii),我们从经验上表明,学习特征确实会导致稀疏,从而减少图像预测因子的平滑表示。这一事实是可能导致性能恶化的,这与沿差异性的平滑度相关。
translated by 谷歌翻译
要了解深度学习的作品,了解神经网络的培训动态至关重要。关于这些动态的几个有趣的假设是基于经验观察到的现象,但存在有限的理论上了解此类现象的时间和原因。在本文中,我们考虑了内核最小二乘目标对梯度流动的培训动态,这是SGD培训的神经网络的限制动态。使用精确的高维渐近学,我们将拟合模型的动态表征在两个“世界”中:在甲骨文世界中,该模型在人口分布和实证世界中培训,模型在采样的数据集上培训。我们展示在内核的温和条件下,$ L ^ 2 $目标回归函数,培训动力学经历三个阶段,其特征在于两个世界的模型的行为。我们的理论结果也在数学上正式化一些有趣的深度学习现象。具体而言,在我们的环境中,我们展示了SGD逐步了解更多复杂的功能,并且存在“深度引导”现象:在第二阶段,尽管经验训练误差要小得多,但两个世界的测试错误仍然接近。最后,我们提供了一个具体的例子,比较了两种不同核的动态,这表明更快的培训不需要更好地推广。
translated by 谷歌翻译
许多监督的学习问题涉及高维数据,例如图像,文本或图形。为了能够有效地利用数据,它通常有用的是在手头的问题中利用某些几何前瞻,例如与换算,置换子组或稳定性的不变性。通过考虑球体上这些功能的球形谐波分解,我们研究了目标功能提出了这种不变性和稳定性特性的学习问题的样本复杂性。我们提供内核方法的非参数率的收敛速度,并且在与相应的非不变内核相比,在该组上使用不变内核时,通过等于组的大小的因子的提高。当样本大小足够大时,这些改进是有效的,其渐近行为取决于该组的光谱特性。最后,这些增益扩展到不变性组之外,还涵盖小变形的几何稳定性,这里被建模为排列的子集(不一定是子组)。
translated by 谷歌翻译
贝叶斯神经网络试图将神经网络的强大预测性能与与贝叶斯架构预测产出相关的不确定性的正式量化相结合。然而,它仍然不清楚如何在升入网络的输出空间时,如何赋予网络的参数。提出了一种可能的解决方案,使用户能够为手头的任务提供适当的高斯过程协方差函数。我们的方法构造了网络参数的先前分配,称为ridgelet,它近似于网络的输出空间中的Posited高斯过程。与神经网络和高斯过程之间的连接的现有工作相比,我们的分析是非渐近的,提供有限的样本大小的错误界限。这建立了贝叶斯神经网络可以近似任何高斯过程,其协方差函数是足够规律的任何高斯过程。我们的实验评估仅限于概念验证,在那里我们证明ridgele先前可以在可以提供合适的高斯过程的回归问题之前出现非结构化。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
最近关于深度学习的研究侧重于极端过度参数化的设置,并表明,当网络宽度大于训练样本大小的高度多项式$ N $和目标错误$ \ epsilon ^ {-1} $,由(随机)梯度下降学习的深度神经网络享受很好的优化和泛化保证。最近,表明,在训练数据的某些边缘假设下,PolyGarithic宽度条件足以使两层Relu网络收敛和概括(Ji和Telgarsky,2019)。但是,是否可以通过这种轻度过度参数化学习深度神经网络仍然是一个开放的问题。在这项工作中,我们肯定地回答了这个问题,并建立了由(随机)梯度下降所培训的深度Relu网络的更尖锐的学习保证。具体而言,在以前的工作中的某些假设下,我们的优化和泛化保证以$ N $和$ \ epsilon ^ { - 1} $持有网络宽度波动力算法。我们的结果推动了对更实际的环境的过度参数化深神经网络的研究。
translated by 谷歌翻译
我们通过严格的数学论点建设性地展示了GNN在紧凑型$ d $维欧几里得网格上的近似频带限制功能中的架构优于NN的架构。我们表明,前者只需要$ \ MATHCAL {m} $采样函数值就可以实现$ o_ {d}的均匀近似错误(2^{ - \ \ m athcal {m} {m}^{1/d/d/d}}}}} $从某种意义上说,这个错误率是最佳的,NNS可能会取得更糟的情况。
translated by 谷歌翻译
最近的实证工作表明,由卷积神经网络(CNNS)启发的分层卷积核(CNNS)显着提高了内核方法​​在图像分类任务中的性能。对这些架构成功的广泛解释是它们编码适合自然图像的假设类。然而,了解卷积架构中近似和泛化之间的精确相互作用仍然是一个挑战。在本文中,我们考虑均匀分布在超立方体上的协变量(图像像素)的程式化设置,并完全表征由单层卷积,汇集和下采样操作组成的内核的RKH。然后,我们使用这些内核通过标准内部产品内核来研究内核方法的样本效率的增益。特别是,我们展示了1)卷积层通过将RKHS限制为“本地”功能来打破维度的诅咒; 2)局部汇集偏置朝向低频功能,这是较小的翻译稳定; 3)下采样可以修改高频成粒空间,但留下了大致不变的低频部分。值得注意的是,我们的结果量化了选择适应目标函数的架构如何导致样本复杂性的大量改善。
translated by 谷歌翻译
At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in the infinite-width limit (16; 4; 7; 13; 6), thus connecting them to kernel methods. We prove that the evolution of an ANN during training can also be described by a kernel: during gradient descent on the parameters of an ANN, the network function f θ (which maps input vectors to output vectors) follows the kernel gradient of the functional cost (which is convex, in contrast to the parameter cost) w.r.t. a new kernel: the Neural Tangent Kernel (NTK). This kernel is central to describe the generalization features of ANNs. While the NTK is random at initialization and varies during training, in the infinite-width limit it converges to an explicit limiting kernel and it stays constant during training. This makes it possible to study the training of ANNs in function space instead of parameter space. Convergence of the training can then be related to the positive-definiteness of the limiting NTK. We prove the positive-definiteness of the limiting NTK when the data is supported on the sphere and the non-linearity is non-polynomial. We then focus on the setting of least-squares regression and show that in the infinitewidth limit, the network function f θ follows a linear differential equation during training. The convergence is fastest along the largest kernel principal components of the input data with respect to the NTK, hence suggesting a theoretical motivation for early stopping. Finally we study the NTK numerically, observe its behavior for wide networks, and compare it to the infinite-width limit.
translated by 谷歌翻译