Neural networks are known to be a class of highly expressive functions able to fit even random inputoutput mappings with 100% accuracy. In this work we present properties of neural networks that complement this aspect of expressivity. By using tools from Fourier analysis, we highlight a learning bias of deep networks towards low frequency functions -i.e. functions that vary globally without local fluctuations -which manifests itself as a frequency-dependent learning speed. Intuitively, this property is in line with the observation that over-parameterized networks prioritize learning simple patterns that generalize across data samples. We also investigate the role of the shape of the data manifold by presenting empirical and theoretical evidence that, somewhat counter-intuitively, learning higher frequencies gets easier with increasing manifold complexity.
translated by 谷歌翻译
神经网络是通用函数近似器,尽管过度参数过多,但已知可以很好地概括。我们从神经网络的光谱偏置的角度研究了这种现象。我们的贡献是两个方面。首先,我们通过利用与有限元方法理论的联系来为Relu神经网络的光谱偏置提供理论解释。其次,基于该理论,我们预测将激活函数切换到分段线性B-Spline(即HAT函数)将消除这种频谱偏置,我们在各种设置中进行经验验证。我们的经验研究还表明,使用随机梯度下降和ADAM对具有HAT激活功能的神经网络进行了更快的训练。结合以前的工作表明,HAT激活功能还提高了图像分类任务的概括精度,这表明使用HAT激活在某些问题上具有重大优势。
translated by 谷歌翻译
Deep neural networks can approximate functions on different types of data, from images to graphs, with varied underlying structure. This underlying structure can be viewed as the geometry of the data manifold. By extending recent advances in the theoretical understanding of neural networks, we study how a randomly initialized neural network with piece-wise linear activation splits the data manifold into regions where the neural network behaves as a linear function. We derive bounds on the density of boundary of linear regions and the distance to these boundaries on the data manifold. This leads to insights into the expressivity of randomly initialized deep neural networks on non-Euclidean data sets. We empirically corroborate our theoretical results using a toy supervised learning problem. Our experiments demonstrate that number of linear regions varies across manifolds and the results hold with changing neural network architectures. We further demonstrate how the complexity of linear regions is different on the low dimensional manifold of images as compared to the Euclidean space, using the MetFaces dataset.
translated by 谷歌翻译
低维歧管假设认为,在许多应用中发现的数据,例如涉及自然图像的数据(大约)位于嵌入高维欧几里得空间中的低维歧管上。在这种情况下,典型的神经网络定义了一个函数,该函数在嵌入空间中以有限数量的向量作为输入。但是,通常需要考虑在训练分布以外的点上评估优化网络。本文考虑了培训数据以$ \ mathbb r^d $的线性子空间分配的情况。我们得出对由神经网络定义的学习函数变化的估计值,沿横向子空间的方向。我们研究了数据歧管的编纂中与网络的深度和噪声相关的潜在正则化效应。由于存在噪声,我们还提出了训练中的其他副作用。
translated by 谷歌翻译
过度参数化神经网络(NNS)的小概括误差可以通过频率偏见现象来部分解释,在频率偏置现象中,基于梯度的算法将低频失误最小化,然后再减少高频残差。使用神经切线内核(NTK),可以为训练提供理论上严格的分析,其中数据是从恒定或分段构剂概率密度绘制的数据。由于大多数训练数据集不是从此类分布中汲取的,因此我们使用NTK模型和数据依赖性的正交规则来理论上量化NN训练的频率偏差,给定完全不均匀的数据。通过用精心选择的Sobolev规范替换损失函数,我们可以进一步扩大,抑制,平衡或逆转NN训练中的内在频率偏差。
translated by 谷歌翻译
我们研究了具有由完全连接的神经网络产生的密度场的固体各向同性物质惩罚(SIMP)方法,将坐标作为输入。在大的宽度限制中,我们表明DNN的使用导致滤波效果类似于SIMP的传统过滤技术,具有由神经切线内核(NTK)描述的过滤器。然而,这种过滤器在翻译下不是不变的,导致视觉伪像和非最佳形状。我们提出了两个输入坐标的嵌入,导致NTK和滤波器的空间不变性。我们经验证实了我们的理论观察和研究了过滤器大小如何受网络架构的影响。我们的解决方案可以很容易地应用于任何其他基于坐标的生成方法。
translated by 谷歌翻译
我们证明了由例如He等人提出的广泛使用的方法。(2015年)并使用梯度下降对最小二乘损失进行训练并不普遍。具体而言,我们描述了一大批一维数据生成分布,较高的概率下降只会发现优化景观的局部最小值不好,因为它无法将其偏离偏差远离其初始化,以零移动。。事实证明,在这些情况下,即使目标函数是非线性的,发现的网络也基本执行线性回归。我们进一步提供了数值证据,表明在实际情况下,对于某些多维分布而发生这种情况,并且随机梯度下降表现出相似的行为。我们还提供了有关初始化和优化器的选择如何影响这种行为的经验结果。
translated by 谷歌翻译
表征过度参数化神经网络的显着概括性能仍然是一个开放的问题。在本文中,我们促进了将重点转移到初始化而不是神经结构或(随机)梯度下降的转变,以解释这种隐式的正则化。通过傅立叶镜头,我们得出了神经网络光谱偏置的一般结果,并表明神经网络的概括与它们的初始化密切相关。此外,我们在经验上使用实用的深层网络巩固了开发的理论见解。最后,我们反对有争议的平米尼猜想,并表明傅立叶分析为理解神经网络的概括提供了更可靠的框架。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
在许多情况下,更简单的模型比更复杂的模型更可取,并且该模型复杂性的控制是机器学习中许多方法的目标,例如正则化,高参数调整和体系结构设计。在深度学习中,很难理解复杂性控制的潜在机制,因为许多传统措施并不适合深度神经网络。在这里,我们开发了几何复杂性的概念,该概念是使用离散的dirichlet能量计算的模型函数变异性的量度。使用理论论据和经验结果的结合,我们表明,许多常见的训练启发式方法,例如参数规范正规化,光谱规范正则化,平稳性正则化,隐式梯度正则化,噪声正则化和参数初始化的选择,都可以控制几何学复杂性,并提供一个统一的框架,以表征深度学习模型的行为。
translated by 谷歌翻译
通过新的设计推动,允许规避光谱偏差,隐式神经表示(INRS)最近被出现为具有古典离散化表示的有希望的替代方案。尽管如此,尽管他们的实际成功,我们仍然缺乏inrs代表信号的正确理论表征。在这项工作中,我们的目标是填补这一差距,我们提出了一种在理论上分析inrs的新颖统一视角。利用谐波分析和深度学习理论的结果,我们表明大多数INR系列类似于结构化信号词典,其原子是初始映射频率集的整数谐波。该结构允许INR使用只有许多只能与深度线性增长的参数表达频率支持的信号。之后,我们探讨了初步结果关于经验神经切线内核(NTK)的近期结果的归纳偏见。具体地,我们表明NTK的特征功能可以被视为其内部产品与目标信号的内部产品确定其重建的最终性能。在这方面,我们揭示了Meta学习初始化具有类似于字典学习的NTK的重塑效果,构建字典原子作为在Meta训练期间看到的例子的组合。我们的业绩允许设计和调整小说INR架构,但对更广泛的深度学习理论界也可能感兴趣。
translated by 谷歌翻译
使用神经网络学习依赖于可代表功能的复杂性,但更重要的是,典型参数的特定分配与不同复杂度的功能。将激活区域的数量作为复杂性度量,最近的作品表明,深度释放网络的实际复杂性往往远远远非理论最大值。在这项工作中,我们表明这种现象也发生在具有颤扬(多参数)激活功能的网络中,并且在考虑分类任务中的决策边界时。我们还表明参数空间具有多维全维区域,具有广泛不同的复杂性,并在预期的复杂性上获得非竞争下限。最后,我们调查了不同的参数初始化程序,并表明他们可以提高培训的收敛速度。
translated by 谷歌翻译
光谱分析是一种强大的工具,将任何功能分解成更简单的部件。在机器学习中,Mercer的定理概括了这个想法,为任何内核和输入分布提供了增加频率的自然基础。最近,几种作品通过神经切线内核的框架将此分析扩展到深度神经网络。在这项工作中,我们分析了深度神经网络的层面频谱偏压,并将其与不同层的贡献相关联在给定的目标函数的泛化误差减少中的贡献。我们利用Hermite多项式和球面谐波的性质来证明初始层朝着单位球体上定义的高频函数呈现较大偏差。我们进一步提供了验证我们在深神经网络的高维数据集中的理论的实证结果。
translated by 谷歌翻译
我们研究了使用尖刺,现场依赖的随机矩阵理论研究迷你批次对深神经网络损失景观的影响。我们表明,批量黑森州的极值值的大小大于经验丰富的黑森州。我们还获得了类似的结果对Hessian的概括高斯牛顿矩阵近似。由于我们的定理,我们推导出作为批量大小的最大学习速率的分析表达式,为随机梯度下降(线性缩放)和自适应算法(例如ADAM(Square Root Scaling)提供了通知实际培训方案,例如光滑,非凸深神经网络。虽然随机梯度下降的线性缩放是在我们概括的更多限制性条件下导出的,但是适应优化者的平方根缩放规则是我们的知识,完全小说。随机二阶方法和自适应方法的百分比,我们得出了最小阻尼系数与学习率与批量尺寸的比率成比例。我们在Cifar-$ 100 $和ImageNet数据集上验证了我们的VGG / WimerEsnet架构上的索赔。根据我们对象检的调查,我们基于飞行学习率和动量学习者开发了一个随机兰齐齐竞争,这避免了对这些关键的超参数进行昂贵的多重评估的需求,并在预残留的情况下显示出良好的初步结果Cifar的architecure - $ 100 $。
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
懒惰培训制度中的神经网络收敛到内核机器。在丰富的特征学习制度中可以在丰富的特征学习制度中可以使用数据依赖性内核来学习内核机器吗?我们证明,这可以是由于我们术语静音对准的现象,这可能需要网络的切线内核在特征内演变,而在小并且在损失明显降低,并且之后仅在整体尺度上生长。我们表明这种效果在具有小初始化和白化数据的同质神经网络中进行。我们在线性网络壳体提供了对这种效果的分析处理。一般来说,我们发现内核在训练的早期阶段开发了低级贡献,然后在总体上发展,产生了与最终网络的切线内核的内核回归解决方案等同的函数。内核的早期光谱学习取决于深度。我们还证明了非白化数据可以削弱无声的对准效果。
translated by 谷歌翻译
We show that passing input points through a simple Fourier feature mapping enables a multilayer perceptron (MLP) to learn high-frequency functions in lowdimensional problem domains. These results shed light on recent advances in computer vision and graphics that achieve state-of-the-art results by using MLPs to represent complex 3D objects and scenes. Using tools from the neural tangent kernel (NTK) literature, we show that a standard MLP fails to learn high frequencies both in theory and in practice. To overcome this spectral bias, we use a Fourier feature mapping to transform the effective NTK into a stationary kernel with a tunable bandwidth. We suggest an approach for selecting problem-specific Fourier features that greatly improves the performance of MLPs for low-dimensional regression tasks relevant to the computer vision and graphics communities.
translated by 谷歌翻译
当我们扩大数据集,模型尺寸和培训时间时,深入学习方法的能力中存在越来越多的经验证据。尽管有一些关于这些资源如何调节统计能力的说法,但对它们对模型培训的计算问题的影响知之甚少。这项工作通过学习$ k $ -sparse $ n $ bits的镜头进行了探索,这是一个构成理论计算障碍的规范性问题。在这种情况下,我们发现神经网络在扩大数据集大小和运行时间时会表现出令人惊讶的相变。特别是,我们从经验上证明,通过标准培训,各种体系结构以$ n^{o(k)} $示例学习稀疏的平等,而损失(和错误)曲线在$ n^{o(k)}后突然下降。 $迭代。这些积极的结果几乎匹配已知的SQ下限,即使没有明确的稀疏性先验。我们通过理论分析阐明了这些现象的机制:我们发现性能的相变不到SGD“在黑暗中绊倒”,直到它找到了隐藏的特征集(自然算法也以$ n^中的方式运行{o(k)} $ time);取而代之的是,我们表明SGD逐渐扩大了人口梯度的傅立叶差距。
translated by 谷歌翻译
尽管他们能够代表高度表现力的功能,但深度学习模型似乎找到了简单的解决方案,这些解决方案令人惊讶地概括了。光谱偏见 - 神经网络优先学习低频功能的趋势 - 是对此现象的一种可能解释,但是到目前为止,在理论模型和简化实验中,主要观察到了光谱偏差。在这项工作中,我们提出了用于测量CIFAR-10和Imagenet上现代图像分类网络中光谱偏差的方法。我们发现这些网络确实表现出光谱偏差,并且提高CIFAR-10测试准确性的干预措施往往会产生学到的功能,这些功能总体上具有较高的频率,但在每个类别的示例附近频率较低。这种趋势在培训时间,模型架构,培训示例的数量,数据增强和自我介绍的变化之间存在。我们还探索了功能频率和图像频率之间的连接,并发现光谱偏置对自然图像中普遍存在的低频敏感。在Imagenet上,我们发现学习的功能频率也随内部类别的多样性而变化,并且在更多样化的类别上具有较高的频率。我们的工作使测量并最终影响用于图像分类的神经网络的光谱行为,并且是理解为什么深层模型良好概述的一步。
translated by 谷歌翻译
最近的工作表明,不同体系结构的卷积神经网络学会按照相同的顺序对图像进行分类。为了理解这种现象,我们重新审视了过度参数的深度线性网络模型。我们的分析表明,当隐藏层足够宽时,该模型参数的收敛速率沿数据的较大主组件的方向呈指数级数,该方向由由相应的奇异值控制的速率。我们称这种收敛模式主成分偏差(PC偏置)。从经验上讲,我们展示了PC偏差如何简化线性和非线性网络的学习顺序,在学习的早期阶段更为突出。然后,我们将结果与简单性偏见进行比较,表明可以独立看到这两个偏见,并以不同的方式影响学习顺序。最后,我们讨论了PC偏差如何解释早期停止及其与PCA的联系的一些好处,以及为什么深网与随机标签更慢地收敛。
translated by 谷歌翻译