许多监督的学习问题涉及高维数据,例如图像,文本或图形。为了能够有效地利用数据,它通常有用的是在手头的问题中利用某些几何前瞻,例如与换算,置换子组或稳定性的不变性。通过考虑球体上这些功能的球形谐波分解,我们研究了目标功能提出了这种不变性和稳定性特性的学习问题的样本复杂性。我们提供内核方法的非参数率的收敛速度,并且在与相应的非不变内核相比,在该组上使用不变内核时,通过等于组的大小的因子的提高。当样本大小足够大时,这些改进是有效的,其渐近行为取决于该组的光谱特性。最后,这些增益扩展到不变性组之外,还涵盖小变形的几何稳定性,这里被建模为排列的子集(不一定是子组)。
translated by 谷歌翻译
最近的实证工作表明,由卷积神经网络(CNNS)启发的分层卷积核(CNNS)显着提高了内核方法​​在图像分类任务中的性能。对这些架构成功的广泛解释是它们编码适合自然图像的假设类。然而,了解卷积架构中近似和泛化之间的精确相互作用仍然是一个挑战。在本文中,我们考虑均匀分布在超立方体上的协变量(图像像素)的程式化设置,并完全表征由单层卷积,汇集和下采样操作组成的内核的RKH。然后,我们使用这些内核通过标准内部产品内核来研究内核方法的样本效率的增益。特别是,我们展示了1)卷积层通过将RKHS限制为“本地”功能来打破维度的诅咒; 2)局部汇集偏置朝向低频功能,这是较小的翻译稳定; 3)下采样可以修改高频成粒空间,但留下了大致不变的低频部分。值得注意的是,我们的结果量化了选择适应目标函数的架构如何导致样本复杂性的大量改善。
translated by 谷歌翻译
We consider the problem of estimating the optimal transport map between a (fixed) source distribution $P$ and an unknown target distribution $Q$, based on samples from $Q$. The estimation of such optimal transport maps has become increasingly relevant in modern statistical applications, such as generative modeling. At present, estimation rates are only known in a few settings (e.g. when $P$ and $Q$ have densities bounded above and below and when the transport map lies in a H\"older class), which are often not reflected in practice. We present a unified methodology for obtaining rates of estimation of optimal transport maps in general function spaces. Our assumptions are significantly weaker than those appearing in the literature: we require only that the source measure $P$ satisfies a Poincar\'e inequality and that the optimal map be the gradient of a smooth convex function that lies in a space whose metric entropy can be controlled. As a special case, we recover known estimation rates for bounded densities and H\"older transport maps, but also obtain nearly sharp results in many settings not covered by prior work. For example, we provide the first statistical rates of estimation when $P$ is the normal distribution and the transport map is given by an infinite-width shallow neural network.
translated by 谷歌翻译
We consider neural networks with a single hidden layer and non-decreasing positively homogeneous activation functions like the rectified linear units. By letting the number of hidden units grow unbounded and using classical non-Euclidean regularization tools on the output weights, they lead to a convex optimization problem and we provide a detailed theoretical analysis of their generalization performance, with a study of both the approximation and the estimation errors. We show in particular that they are adaptive to unknown underlying linear structures, such as the dependence on the projection of the input variables onto a low-dimensional subspace. Moreover, when using sparsity-inducing norms on the input weights, we show that high-dimensional non-linear variable selection may be achieved, without any strong assumption regarding the data and with a total number of variables potentially exponential in the number of observations. However, solving this convex optimization problem in infinite dimensions is only possible if the non-convex subproblem of addition of a new unit can be solved efficiently. We provide a simple geometric interpretation for our choice of activation functions and describe simple conditions for convex relaxations of the finite-dimensional non-convex subproblem to achieve the same generalization error bounds, even when constant-factor approximations cannot be found. We were not able to find strong enough convex relaxations to obtain provably polynomial-time algorithms and leave open the existence or non-existence of such tractable algorithms with non-exponential sample complexities.
translated by 谷歌翻译
我们研究了非参数脊的最小二乘的学习属性。特别是,我们考虑常见的估计人的估计案例,由比例依赖性内核定义,并专注于规模的作用。这些估计器内插数据,可以显示规模来通过条件号控制其稳定性。我们的分析表明,这是不同的制度,具体取决于样本大小,其尺寸与问题的平滑度之间的相互作用。实际上,当样本大小小于数据维度中的指数时,可以选择比例,以便学习错误减少。随着样本尺寸变大,总体错误停止减小但有趣地可以选择规模,使得噪声引起的差异仍然存在界线。我们的分析结合了概率,具有来自插值理论的许多分析技术。
translated by 谷歌翻译
我们为在一般来源条件下的希尔伯特量表中的新型Tikhonov登记学习问题提供了最小的自适应率。我们的分析不需要在假设类中包含回归函数,并且最著名的是不使用传统的\ textit {先验{先验}假设。使用插值理论,我们证明了Mercer运算符的光谱可以在存在“紧密''$ l^{\ infty} $嵌入的存在的情况下,可以推断出合适的Hilbert鳞片的嵌入。我们的分析利用了新的傅立叶能力条件在某些参数制度中,修改后的Mercer运算符的最佳Lorentz范围空间。
translated by 谷歌翻译
要了解深度学习的作品,了解神经网络的培训动态至关重要。关于这些动态的几个有趣的假设是基于经验观察到的现象,但存在有限的理论上了解此类现象的时间和原因。在本文中,我们考虑了内核最小二乘目标对梯度流动的培训动态,这是SGD培训的神经网络的限制动态。使用精确的高维渐近学,我们将拟合模型的动态表征在两个“世界”中:在甲骨文世界中,该模型在人口分布和实证世界中培训,模型在采样的数据集上培训。我们展示在内核的温和条件下,$ L ^ 2 $目标回归函数,培训动力学经历三个阶段,其特征在于两个世界的模型的行为。我们的理论结果也在数学上正式化一些有趣的深度学习现象。具体而言,在我们的环境中,我们展示了SGD逐步了解更多复杂的功能,并且存在“深度引导”现象:在第二阶段,尽管经验训练误差要小得多,但两个世界的测试错误仍然接近。最后,我们提供了一个具体的例子,比较了两种不同核的动态,这表明更快的培训不需要更好地推广。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
对于某种缩放的随机梯度下降(SGD)的初始化,已经显示宽神经网络(NN)通过再现核Hilbert空间(RKHS)方法来近似近似。最近的实证工作表明,对于某些分类任务,RKHS方法可以替换NNS而无需大量的性能损失。另一方面,已知两层NNS编码比RKHS更丰富的平滑度等级,并且我们知道SGD培训的NN可提供的特殊示例可提供胜过RKHS。即使在宽网络限制中,这也是如此,对于初始化的不同缩放。我们如何调和上述索赔?任务是否优于RKHS?如果协变量近在各向同性,RKHS方法患有维度的诅咒,而NNS可以通过学习最佳的低维表示来克服它。在这里,我们表明,如果协变量显示与目标函数相同的低维结构,则这种维度的这种诅咒变得更温和,并且我们精确地表征了这个权衡。在这些结果上建立,我们提出了可以在早期工作中观察到的统一框架中捕获的尖刺协变量模型。我们假设这种潜伏的低维结构存在于图像分类中。我们通过表明训练分配的特定扰动降低了比NN更大的更显高度显着的训练方法的特定扰动来测试这些假设。
translated by 谷歌翻译
本文研究了基于Laplacian Eigenmaps(Le)的基于Laplacian EIGENMAPS(PCR-LE)的主要成分回归的统计性质,这是基于Laplacian Eigenmaps(Le)的非参数回归的方法。 PCR-LE通过投影观察到的响应的向量$ {\ bf y} =(y_1,\ ldots,y_n)$ to to changbood图表拉普拉斯的某些特征向量跨越的子空间。我们表明PCR-Le通过SoboLev空格实现了随机设计回归的最小收敛速率。在设计密度$ P $的足够平滑条件下,PCR-le达到估计的最佳速率(其中已知平方$ l ^ 2 $ norm的最佳速率为$ n ^ { - 2s /(2s + d) )} $)和健美的测试($ n ^ { - 4s /(4s + d)$)。我们还表明PCR-LE是\ EMPH {歧管Adaptive}:即,我们考虑在小型内在维度$ M $的歧管上支持设计的情况,并为PCR-LE提供更快的界限Minimax估计($ n ^ { - 2s /(2s + m)$)和测试($ n ^ { - 4s /(4s + m)$)收敛率。有趣的是,这些利率几乎总是比图形拉普拉斯特征向量的已知收敛率更快;换句话说,对于这个问题的回归估计的特征似乎更容易,统计上讲,而不是估计特征本身。我们通过经验证据支持这些理论结果。
translated by 谷歌翻译
我们研究了随机近似程序,以便基于观察来自ergodic Markov链的长度$ n $的轨迹来求近求解$ d -dimension的线性固定点方程。我们首先表现出$ t _ {\ mathrm {mix}} \ tfrac {n}} \ tfrac {n}} \ tfrac {d}} \ tfrac {d} {n} $的非渐近性界限。$ t _ {\ mathrm {mix $是混合时间。然后,我们证明了一种在适当平均迭代序列上的非渐近实例依赖性,具有匹配局部渐近最小的限制的领先术语,包括对参数$的敏锐依赖(d,t _ {\ mathrm {mix}}) $以高阶术语。我们将这些上限与非渐近Minimax的下限补充,该下限是建立平均SA估计器的实例 - 最优性。我们通过Markov噪声的政策评估导出了这些结果的推导 - 覆盖了所有$ \ lambda \中的TD($ \ lambda $)算法,以便[0,1)$ - 和线性自回归模型。我们的实例依赖性表征为HyperParameter调整的细粒度模型选择程序的设计开放了门(例如,在运行TD($ \ Lambda $)算法时选择$ \ lambda $的值)。
translated by 谷歌翻译
当回归函数属于标准的平滑类时,由衍生物的单变量函数组成,衍生物到达$(\ gamma + 1)$ th由Action Anclople或Ae界定的常见常数,众所周知,最小的收敛速率均值平均错误(MSE)是$ \左(\ FRAC {\ SIGMA ^ {2}} {n} \右)^ {\ frac {2 \ gamma + 2} {2 \ gamma + 3}} $ \伽玛$是有限的,样本尺寸$ n \ lightarrow \ idty $。从一个不可思议的观点来看,考虑有限$ N $,本文显示:对于旧的H \“较旧的和SoboLev类,最低限度最佳速率是$ \ frac {\ sigma ^ {2} \ left(\ gamma \ vee1 \右)$ \ frac {n} {\ sigma ^ {2}} \ precsim \ left(\ gamma \ vee1 \右)^ {2 \ gamma + 3} $和$ \ left(\ frac {\ sigma ^ {2}} {n} \右)^ {\ frac {2 \ gamma + 2} $ \ r \ frac {n} {\ sigma ^ {2}}} \ succsim \ left(\ gamma \ vee1 \右)^ {2 \ gamma + 3} $。为了建立这些结果,我们在覆盖和覆盖号码上获得上下界限,以获得$ k的广义H \“较旧的班级$ th($ k = 0,...,\ gamma $)衍生物由上面的参数$ r_ {k} $和$ \ gamma $ th衍生物是$ r _ {\ gamma + 1} - $ lipschitz (以及广义椭圆形的平滑功能)。我们的界限锐化了标准类的古典度量熵结果,并赋予$ \ gamma $和$ r_ {k} $的一般依赖。通过在$ r_ {k} = 1 $以下派生MIMIMAX最佳MSE率,$ r_ {k} \ LEQ \ left(k-1 \右)!$和$ r_ {k} = k!$(与后两个在我们的介绍中有动机的情况)在我们的新熵界的帮助下,我们展示了一些有趣的结果,无法在文献中的现有熵界显示。对于H \“较旧的$ D-$变化函数,我们的结果表明,归一渐近率$ \左(\ frac {\ sigma ^ {2}} {n}右)^ {\ frac {2 \ Gamma + 2} {2 \ Gamma + 2 + D}} $可能是有限样本中的MSE低估。
translated by 谷歌翻译
尽管他们成功了,但了解卷积神经网络(CNN)如何有效地学习高维功能仍然是一个基本挑战。一个普遍的看法是,这些模型利用自然数据(例如图像)的组成和分层结构。然而,我们对这种结构如何影响性能,缺乏定量的理解,例如训练样本数量的概括误差的衰减率。在本文中,我们研究了内核制度中的深入CNN:i)我们证明了相应的内核及其渐近学的光谱继承了网络的层次结构; ii)我们使用概括范围来证明深CNN适应目标函数的空间尺度; iii)我们通过计算教师学生环境中误差的衰减率来说明这一结果,在教师学生的设置中,对另一个具有随机发射参数的深CNN的输出进行了深入的CNN训练。我们发现,如果教师函数取决于输入变量的某些低维基集,则速率由这些子集的有效维度控制。相反,如果教师函数取决于整个输入变量,则错误率与输入维度成反比。有趣的是,这意味着尽管具有层次结构,但深CNN产生的功能太丰富了,无法在高维度上有效地学习。
translated by 谷歌翻译
本文研究了无限二维希尔伯特空间之间线性算子的学习。训练数据包括希尔伯特空间中的一对随机输入向量以及在未知的自我接合线性运算符下的嘈杂图像。假设操作员在已知的基础上是对角线化的,则该工作解决了给定数据估算操作员特征值的等效反问题。采用贝叶斯方法,理论分析在无限的数据限制中建立了后部收缩率,而高斯先验者与反向问题的正向图没有直接相关。主要结果还包括学习理论的概括错误保证了广泛的分配变化。这些收敛速率分别量化了数据平滑度和真实特征值衰减或生长的影响,分别是紧凑或无界操作员对样品复杂性的影响。数值证据支持对角线和非对角性环境中的理论。
translated by 谷歌翻译
从数据中学习的方法取决于各种类型的调整参数,例如惩罚强度或步长大小。由于性能可以在很大程度上取决于这些参数,因此重要的是要比较估算器的类别 - 考虑规定的有限调谐参数集,而不是特别调谐的方法。在这项工作中,我们通过同类中最佳方法的相对性能研究方法类。我们考虑了线性回归的中心问题,即随机的各向同性地面真理,并研究了两种基本方法的估计性能,即梯度下降和脊回归。我们公布以下现象。 (1)对于一般设计,当经验数据协方差矩阵衰减的特征值缓慢,作为指数较不小于统一的功率定律时,恒定的梯度下降优于山脊回归。相反,如果特征值迅速衰减,则作为指数大于统一或指数的权力定律,我们表明山脊回归优于梯度下降。 (2)对于正交设计,我们计算了确切的最小值最佳估计器类别(达到最低最大最大最佳),这表明它等同于具有衰减学习率的梯度下降。我们发现山脊回归和梯度下降的次数均具有恒定的步长。我们的结果表明,统计性能可以在很大程度上取决于调整参数。特别是,虽然最佳调谐脊回归是我们设置中的最佳估计器,但当仅在有限的许多正则化参数上调整两种方法时,它可以用任意/无界数量的梯度下降来表现优于梯度下降。
translated by 谷歌翻译
在本文中,我们研究了与具有多种激活函数的浅神经网络相对应的变异空间的近似特性。我们介绍了两个主要工具,用于估计这些空间的度量熵,近似率和$ n $宽度。首先,我们介绍了平滑参数化词典的概念,并在非线性近似速率,度量熵和$ n $ widths上给出了上限。上限取决于参数化的平滑度。该结果适用于与浅神经网络相对应的脊功能的字典,并且在许多情况下它们的现有结果改善了。接下来,我们提供了一种方法,用于下限度量熵和$ n $ widths的变化空间,其中包含某些类别的山脊功能。该结果给出了$ l^2 $ approximation速率,度量熵和$ n $ widths的变化空间的急剧下限具有界变化的乙状结激活函数。
translated by 谷歌翻译
我们研究了趋势过滤的多元版本,称为Kronecker趋势过滤或KTF,因为设计点以$ D $维度形成格子。 KTF是单变量趋势过滤的自然延伸(Steidl等,2006; Kim等人,2009; Tibshirani,2014),并通过最大限度地减少惩罚最小二乘问题,其罚款术语总和绝对(高阶)沿每个坐标方向估计参数的差异。相应的惩罚运算符可以编写单次趋势过滤惩罚运营商的Kronecker产品,因此名称Kronecker趋势过滤。等效,可以在$ \ ell_1 $ -penalized基础回归问题上查看KTF,其中基本功能是下降阶段函数的张量产品,是一个分段多项式(离散样条)基础,基于单变量趋势过滤。本文是Sadhanala等人的统一和延伸结果。 (2016,2017)。我们开发了一套完整的理论结果,描述了$ k \ grone 0 $和$ d \ geq 1 $的$ k ^ {\ mathrm {th}} $ over kronecker趋势过滤的行为。这揭示了许多有趣的现象,包括KTF在估计异构平滑的功能时KTF的优势,并且在$ d = 2(k + 1)$的相位过渡,一个边界过去(在高维对 - 光滑侧)线性泡沫不能完全保持一致。我们还利用Tibshirani(2020)的离散花键来利用最近的结果,特别是离散的花键插值结果,使我们能够将KTF估计扩展到恒定时间内的任何偏离晶格位置(与晶格数量的大小无关)。
translated by 谷歌翻译
We consider the problem of estimating a multivariate function $f_0$ of bounded variation (BV), from noisy observations $y_i = f_0(x_i) + z_i$ made at random design points $x_i \in \mathbb{R}^d$, $i=1,\ldots,n$. We study an estimator that forms the Voronoi diagram of the design points, and then solves an optimization problem that regularizes according to a certain discrete notion of total variation (TV): the sum of weighted absolute differences of parameters $\theta_i,\theta_j$ (which estimate the function values $f_0(x_i),f_0(x_j)$) at all neighboring cells $i,j$ in the Voronoi diagram. This is seen to be equivalent to a variational optimization problem that regularizes according to the usual continuum (measure-theoretic) notion of TV, once we restrict the domain to functions that are piecewise constant over the Voronoi diagram. The regression estimator under consideration hence performs (shrunken) local averaging over adaptively formed unions of Voronoi cells, and we refer to it as the Voronoigram, following the ideas in Koenker (2005), and drawing inspiration from Tukey's regressogram (Tukey, 1961). Our contributions in this paper span both the conceptual and theoretical frontiers: we discuss some of the unique properties of the Voronoigram in comparison to TV-regularized estimators that use other graph-based discretizations; we derive the asymptotic limit of the Voronoi TV functional; and we prove that the Voronoigram is minimax rate optimal (up to log factors) for estimating BV functions that are essentially bounded.
translated by 谷歌翻译
We consider the random feature ridge regression (RFRR) given by a two-layer neural network at random initialization. We study the non-asymptotic behaviors of the training error, cross-validations, and generalization error of RFRR with nearly orthogonal deterministic input data in the overparameterized regime, where the number of parameters $N$ is much larger than the sample size $n$. We respectively establish the concentrations of the training errors, cross-validations, and generalization errors of RFRR around their corresponding errors of kernel ridge regression (KRR). This KRR is defined by an expected kernel from a random feature map. We then approximate the performances of the KRR by a polynomial kernel matrix, whose degree only depends on the orthogonality among different input vectors. The degree of this polynomial kernel essentially determines the asymptotic behavior of RFRR and KRR. Our results hold for a general class of target functions and input data with weak approximate orthonormal properties among different data points. Based on these approximations and nearly orthogonality, we obtain a lower bound for the generalization error of RFRR.
translated by 谷歌翻译
Over the last decade, an approach that has gained a lot of popularity to tackle non-parametric testing problems on general (i.e., non-Euclidean) domains is based on the notion of reproducing kernel Hilbert space (RKHS) embedding of probability distributions. The main goal of our work is to understand the optimality of two-sample tests constructed based on this approach. First, we show that the popular MMD (maximum mean discrepancy) two-sample test is not optimal in terms of the separation boundary measured in Hellinger distance. Second, we propose a modification to the MMD test based on spectral regularization by taking into account the covariance information (which is not captured by the MMD test) and prove the proposed test to be minimax optimal with a smaller separation boundary than that achieved by the MMD test. Third, we propose an adaptive version of the above test which involves a data-driven strategy to choose the regularization parameter and show the adaptive test to be almost minimax optimal up to a logarithmic factor. Moreover, our results hold for the permutation variant of the test where the test threshold is chosen elegantly through the permutation of the samples. Through numerical experiments on synthetic and real-world data, we demonstrate the superior performance of the proposed test in comparison to the MMD test.
translated by 谷歌翻译