少量学习时,基于及时的方法很强劲。然而,Perez等人。 (2021年)最近对他们的表现产生了疑问,因为它们难以在“真实”的几次拍摄设置中获得良好的结果,其中提示和超级参数无法在DEV集上调整。鉴于此,我们对PET进行了广泛的研究,该方法将文本指令与基于示例的FENETUNING结合起来。我们表明,如果正确配置,宠物在真正的几次拍摄设置中强烈执行,即,没有开发装置。这对这种强大的表现至关重要是宠物智能处理多个提示的能力。然后,我们通过在RAFT上运行PET来将我们的调查结果置于真实世界的测试中,直接从现实的NLP应用程序采取的任务的基准,没有标记的开发或测试集。宠物在筏上实现了新的艺术状态,并且在11个任务中靠近非专家人类进行了近距离进行。这些结果表明,基于及时的学习者像宠物Excel这样的真正的几次拍摄学习和支持我们的信念,即从指示中学习的信念将在人类少量学习能力的路径上发挥重要作用。
translated by 谷歌翻译
When scaled to hundreds of billions of parameters, pretrained language models such as GPT-3 (Brown et al., 2020) achieve remarkable few-shot performance. However, enormous amounts of compute are required for training and applying such big models, resulting in a large carbon footprint and making it difficult for researchers and practitioners to use them. We show that performance similar to GPT-3 can be obtained with language models that are much "greener" in that their parameter count is several orders of magnitude smaller. This is achieved by converting textual inputs into cloze questions that contain a task description, combined with gradient-based optimization; exploiting unlabeled data gives further improvements. We identify key factors required for successful natural language understanding with small language models. 1
translated by 谷歌翻译
大型预先训练的语言模型已经显示了几次拍摄学习的承诺,只提供了几个任务特定示例给出了基于文本的任务。款式将很快解决到目前为止为人类研究助理保留的分类任务吗?现有的基准标记不设计用于衡量应用设置的进度,因此不要直接回答这个问题。 RAFT基准(现实世界注释的少量拍摄任务)侧重于自然发生的任务,并使用镜像部署的评估设置。 RAFT的基线评估揭示了当前技术斗争的地区:推理在许多班级的长篇文章和任务上。人类基线表明,非专家人类难以反映出一些分类任务,反映了现实世界的价值有时依赖于域名专业知识。甚至非专业人类基线F1分数超过GPT-3平均为0.11。 RAFT DataSets和排行榜将跟踪哪些模型改进在https://raft.elict.org中转化为现实世界的优势。
translated by 谷歌翻译
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF-better few-shot fine-tuning of language models 1 -a suite of simple and complementary techniques for finetuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning. 2 * The first two authors contributed equally. 1 Alternatively, language models' best friends forever. 2 Our implementation is publicly available at https:// github.com/princeton-nlp/LM-BFF.
translated by 谷歌翻译
最近的几种方法,例如参数有效的微调(PEFT)和模式开发训练(PET),在标签筛选设置中取得了令人印象深刻的结果。但是,它们很难使用,因为它们会受到手动制作的提示的高度可变性,并且通常需要十亿参数语言模型才能达到高精度。为了解决这些缺点,我们提出了SETFIT(句子变压器微调),这是一个有效且迅速的框架,用于对句子变形金刚(ST)进行几次微调。 SetFit首先以对比的暹罗方式对少数文本对进行微调验证的st。然后将所得模型用于生成丰富的文本嵌入,这些嵌入方式用于训练分类头。这个简单的框架不需要任何提示或口头化,并且比现有技术少的参数较少,因此可以实现高精度。我们的实验表明,SetFit通过PEFT和PET技术获得了可比的结果,同时训练的速度更快。我们还表明,SETFIT可以通过简单地切换ST主体来应用于多语言设置。我们的代码可从https://github.com/huggingface/setFit以及我们的数据集获得,网址为https://huggingface.co/setfit。
translated by 谷歌翻译
本文探讨了提高语言模型的零次学习能力的简单方法。我们表明,指令调整 - 通过对说明书中所述的任务集合微调语言模型 - 大幅提升零射门上看不见任务中的表现。我们采取预训练的语言模型和指令调整它通过自然语言指令模板语言表达了60NLP任务137B参数。我们评估这种指令调整模型,我们称之为FLAN,在看不见的任务类型。FLAN显着改善其未修饰的对应的性能和超过25的20个任务,我们评估零射门175BGPT-3。FLAN甚至GPT-3通过在安利,RTE,BoolQ,AI2-ARC,OpenbookQA和StoryCloze大比分胜过几拍。消融研究显示任务和模型的规模,这个数字是指令调整取得成功的关键组成部分。
translated by 谷歌翻译
文本内容通常是协作写作过程的输出:我们从初始草稿开始,提出建议并反复进行更改。不可知的是,当今的语言模型只能产生最终结果。结果,他们缺乏对协作写作至关重要的几种能力:他们无法更新现有文本,难以控制和无法进行口头计划或解释其行为。为了解决这些缺点,我们介绍了Peer,这是一种协作语言模型,经过训练以模仿整个写作过程本身:Peer可以编写草稿,添加建议,提出编辑并为其行为提供解释。至关重要的是,我们训练多个同伴能够填补写作过程的各个部分的实例,从而可以使用自训练技术来提高培训数据的质量,数量和多样性。这通过使其适用于没有编辑历史的域,并提高其遵循说明,编写有用的评论并解释其动作的能力,从而释放了Peer的全部潜力。我们表明,同行在各个领域和编辑任务上取得了强大的性能。
translated by 谷歌翻译
由于细微偏见,主观性和难以在规模上获得良好质量的数据集,尤其考虑到社会偏见和社会的不断变化本质,检测文本中的社会偏见是挑战。为了解决这些挑战,我们提出了一些基于指令的基于指令的方法,以提示预先接受预先接受的语言模型(LMS)。我们从最接近查询的小型支持存储库中选择一些标签平衡的示例,以便在嵌入空间中标记。然后,我们向LM提供由标记示例的此子集的指令,查询文本被分类,偏差定义,并提示它做出决定。我们证明了几次上下文中使用的大型LMS可以检测不同类型的细粒度偏差,具有与微调模型的相似且有时卓越的精度。我们观察到,与较小模型相比,最大的530B参数模型在检测社会偏差方面明显更有效(与其他模型相比,在AUC度量上实现至少20%)。它还在几张拍摄设置中保持高AUC(掉落小于5%),其中标记的存储库减少到100个样本的少量。因此,大型预制语言模型使得更容易且更快地建立新的偏置探测器。
translated by 谷歌翻译
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
translated by 谷歌翻译
The remarkable success of pretrained language models has motivated the study of what kinds of knowledge these models learn during pretraining. Reformulating tasks as fillin-the-blanks problems (e.g., cloze tests) is a natural approach for gauging such knowledge, however, its usage is limited by the manual effort and guesswork required to write suitable prompts. To address this, we develop AUTOPROMPT, an automated method to create prompts for a diverse set of tasks, based on a gradient-guided search. Using AUTO-PROMPT, we show that masked language models (MLMs) have an inherent capability to perform sentiment analysis and natural language inference without additional parameters or finetuning, sometimes achieving performance on par with recent state-of-the-art supervised models. We also show that our prompts elicit more accurate factual knowledge from MLMs than the manually created prompts on the LAMA benchmark, and that MLMs can be used as relation extractors more effectively than supervised relation extraction models. These results demonstrate that automatically generated prompts are a viable parameter-free alternative to existing probing methods, and as pretrained LMs become more sophisticated and capable, potentially a replacement for finetuning.
translated by 谷歌翻译
Instruction tuning enables pretrained language models to perform new tasks from inference-time natural language descriptions. These approaches rely on vast amounts of human supervision in the form of crowdsourced datasets or user interactions. In this work, we introduce Unnatural Instructions: a large dataset of creative and diverse instructions, collected with virtually no human labor. We collect 64,000 examples by prompting a language model with three seed examples of instructions and eliciting a fourth. This set is then expanded by prompting the model to rephrase each instruction, creating a total of approximately 240,000 examples of instructions, inputs, and outputs. Experiments show that despite containing a fair amount of noise, training on Unnatural Instructions rivals the effectiveness of training on open-source manually-curated datasets, surpassing the performance of models such as T0++ and Tk-Instruct across various benchmarks. These results demonstrate the potential of model-generated data as a cost-effective alternative to crowdsourcing for dataset expansion and diversification.
translated by 谷歌翻译
本文着重于几次NLP任务的文本数据增强。现有的数据增强算法要么使用一个小型培训集来生成新的合成数据,要么利用与任务无关的启发式规则(例如,同义词替代)或微调通用预训练的语言模型(例如GPT2)。因此,这些方法具有特定于任务的知识,并且仅限于在简单任务中为弱基线产生低质量的合成数据。为了解决这个问题,我们提出了知识混合数据增强模型(KNOWDA):使用知识混合培训(KOMT)在不同的NLP任务的混合物上预测的编码器LM。 KOMT是一种培训程序,将各种异质NLP任务的输入示例重新定义为统一的文本到文本格式,并采用不同粒度的目标,以学习生成部分或完整的样本。在KOMT的帮助下,Knowda可以隐含地将所需的特定于任务的知识从任务的混合中隐含地结合在一起,并通过一些给定的实例迅速掌握目标任务的固有综合定律。据我们所知,我们是首次尝试将任务数量扩展到多任务共同培训以进行数据扩展。广泛的实验表明,i)Knowda成功地通过少量基准的基准成功地提高了Albert和Deberta的表现,表现优于先前的最新数据增强基线; ii)KNOWDA还可以改善少数弹药任务的模型性能,这是KOMT中未包含的固定任务类型。
translated by 谷歌翻译
GPT-3显示了培训的大规模语言模型(LMS)的卓越情调学习能力,培训数十亿规模数据。在这里,我们解决了GPT-3纸张报告的一些剩余问题,例如非英语LM,不同大小模型的性能,以及最近引入的迅速优化对上下文学习的效果。为实现这一目标,我们介绍了HyperClova,一个韩国VPT-3的韩国变体训练在一个以韩国为中心的560b标准的令牌。通过我们的韩国特定标记化,HyperClova与我们的培训配置增强,显示了韩国各种下游任务的最先进的上下游零射击和几秒钟学习表演。此外,我们展示了基于及时的学习的性能优势,并演示如何集成到迅速的工程管道中。然后,我们讨论了通过引入Hyperclova Studio,互动提示工程界面向ML的非专家提供AI原型设计能力来实现No Code AI范例的可能性。最后,我们展示了我们具有三个成功的内部应用程序的方法的潜力。
translated by 谷歌翻译
How can we extend a pre-trained model to many language understanding tasks, without labeled or additional unlabeled data? Pre-trained language models (PLMs) have been effective for a wide range of NLP tasks. However, existing approaches either require fine-tuning on downstream labeled datasets or manually constructing proper prompts. In this paper, we propose nonparametric prompting PLM (NPPrompt) for fully zero-shot language understanding. Unlike previous methods, NPPrompt uses only pre-trained language models and does not require any labeled data or additional raw corpus for further fine-tuning, nor does it rely on humans to construct a comprehensive set of prompt label words. We evaluate NPPrompt against previous major few-shot and zero-shot learning methods on diverse NLP tasks: including text classification, text entailment, similar text retrieval, and paraphrasing. Experimental results demonstrate that our NPPrompt outperforms the previous best fully zero-shot method by big margins, with absolute gains of 12.8% in accuracy on text classification and 18.9% on the GLUE benchmark.
translated by 谷歌翻译
姿态检测的目标是确定以目标朝向目标的文本中表达的视点。这些观点或上下文通常以许多不同的语言表达,这取决于用户和平台,这可以是本地新闻插座,社交媒体平台,新闻论坛等。然而,姿态检测的大多数研究已经限于使用单一语言和几个有限的目标,在交叉舌姿态检测很少有效。此外,标记数据的非英语来源通常稀缺,并具有额外的挑战。最近,大型多语言语言模型在许多非英语任务上大大提高了性能,尤其是具有有限数量的示例。这突出了模型预培训的重要性及其从少数例子中学习的能力。在本文中,我们展示了对日期交叉姿态检测的最全面的研究:我们在6名语言系列中使用12种语言的12种不同的数据集进行实验,每个都有6个低资源评估设置。对于我们的实验,我们构建了模式开发培训,提出了添加一种新颖的标签编码器来简化言语程序。我们进一步提出了基于情绪的姿态数据进行预培训,这在与几个强的基线相比,在低拍摄环境中显示了大量的6%F1绝对的增长。
translated by 谷歌翻译
Large "instruction-tuned" language models (finetuned to respond to instructions) have demonstrated a remarkable ability to generalize zero-shot to new tasks. Nevertheless, they depend heavily on human-written instruction data that is limited in quantity, diversity, and creativity, therefore hindering the generality of the tuned model. We introduce Self-Instruct, a framework for improving the instruction-following capabilities of pretrained language models by bootstrapping off its own generations. Our pipeline generates instruction, input, and output samples from a language model, then prunes them before using them to finetune the original model. Applying our method to vanilla GPT3, we demonstrate a 33% absolute improvement over the original model on Super-NaturalInstructions, on par with the performance of InstructGPT_001, which is trained with private user data and human annotations. For further evaluation, we curate a set of expert-written instructions for novel tasks, and show through human evaluation that tuning GPT3 with Self-Instruct outperforms using existing public instruction datasets by a large margin, leaving only a 5% absolute gap behind InstructGPT_001. Self-Instruct provides an almost annotation-free method for aligning pre-trained language models with instructions, and we release our large synthetic dataset to facilitate future studies on instruction tuning.
translated by 谷歌翻译
大型语言模型在各种任务上显示出令人印象深刻的几次结果。但是,当知识是此类结果的关键时,就像问题回答和事实检查之类的任务一样,似乎需要存储知识的大量参数计数。众所周知,检索增强模型可以在不需要多个参数的情况下在知识密集的任务上表现出色,但是目前尚不清楚它们是否在几个弹药设置中工作。在这项工作中,我们介绍了地图集,这是一个经过精心设计和预先训练的增强语言模型,能够通过很少的培训示例学习知识密集型任务。我们对包括MMLU,苏格兰短裙和归类等各种任务进行评估,并研究文档索引内容的影响,表明它可以很容易地进行更新。值得注意的是,在自然问题上仅使用64个示例在自然问题上达到超过42 \%的准确性,尽管参数少了50倍,但比540B参数模型的表现优于540b参数模型。
translated by 谷歌翻译
Recent work has shown that fine-tuning large pre-trained language models on a collection of tasks described via instructions, a.k.a. instruction-tuning, improves their zero and few-shot generalization to unseen tasks. However, there is a limited understanding of the performance trade-offs of different decisions made during the instruction-tuning process. These decisions include the scale and diversity of the instruction-tuning benchmark, different task sampling strategies, fine-tuning with and without demonstrations, training using specialized datasets for reasoning and dialogue, and finally, the fine-tuning objectives themselves. In this paper, we characterize the effect of instruction-tuning decisions on downstream task performance when scaling both model and benchmark sizes. To this end, we create OPT-IML Bench: a large benchmark for Instruction Meta-Learning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks, and prepare an evaluation framework to measure three types of model generalizations: to tasks from fully held-out categories, to held-out tasks from seen categories, and to held-out instances from seen tasks. Through the lens of this framework, we first present insights about instruction-tuning decisions as applied to OPT-30B and further exploit these insights to train OPT-IML 30B and 175B, which are instruction-tuned versions of OPT. OPT-IML demonstrates all three generalization abilities at both scales on four different evaluation benchmarks with diverse tasks and input formats -- PromptSource, FLAN, Super-NaturalInstructions, and UnifiedSKG. Not only does it significantly outperform OPT on all benchmarks but is also highly competitive with existing models fine-tuned on each specific benchmark. We release OPT-IML at both scales, together with the OPT-IML Bench evaluation framework.
translated by 谷歌翻译
Existing techniques for training language models can be misaligned with the truth: if we train models with imitation learning, they may reproduce errors that humans make; if we train them to generate text that humans rate highly, they may output errors that human evaluators can't detect. We propose circumventing this issue by directly finding latent knowledge inside the internal activations of a language model in a purely unsupervised way. Specifically, we introduce a method for accurately answering yes-no questions given only unlabeled model activations. It works by finding a direction in activation space that satisfies logical consistency properties, such as that a statement and its negation have opposite truth values. We show that despite using no supervision and no model outputs, our method can recover diverse knowledge represented in large language models: across 6 models and 10 question-answering datasets, it outperforms zero-shot accuracy by 4\% on average. We also find that it cuts prompt sensitivity in half and continues to maintain high accuracy even when models are prompted to generate incorrect answers. Our results provide an initial step toward discovering what language models know, distinct from what they say, even when we don't have access to explicit ground truth labels.
translated by 谷歌翻译
几乎没有射击的内在学习(ICL)使预训练的语言模型能够通过为输入的一部分提供少量的培训示例来执行以前的任务,而无需任何基于梯度的培训。 ICL会产生大量的计算,内存和存储成本,因为它每次进行预测时都涉及处理所有培训示例。参数有效的微调(PEFT)(例如,适配器模块,提示调谐,稀疏更新方法等)提供了替代范式,其中训练了一组少量参数以启用模型来执行新任务。在本文中,我们严格地比较了几个ICL和PEFT,并证明后者提供了更好的准确性,并大大降低了计算成本。在此过程中,我们引入了一种称为(IA)$^3 $的新PEFT方法,该方法通过学习的向量来扩展激活,从而获得更强的性能,同时仅引入相对少量的新参数。我们还提出了一个基于称为T-FEW的T0模型的简单食谱,可以将其应用于新任务,而无需特定于任务的调整或修改。我们通过将T-FEW应用于木筏基准,首次实现超人性能,并以6%的绝对性能优于最先进的方法来验证T-FEW对完全看不见的任务的有效性。我们实验中使用的所有代码均可公开使用。
translated by 谷歌翻译