由于细微偏见,主观性和难以在规模上获得良好质量的数据集,尤其考虑到社会偏见和社会的不断变化本质,检测文本中的社会偏见是挑战。为了解决这些挑战,我们提出了一些基于指令的基于指令的方法,以提示预先接受预先接受的语言模型(LMS)。我们从最接近查询的小型支持存储库中选择一些标签平衡的示例,以便在嵌入空间中标记。然后,我们向LM提供由标记示例的此子集的指令,查询文本被分类,偏差定义,并提示它做出决定。我们证明了几次上下文中使用的大型LMS可以检测不同类型的细粒度偏差,具有与微调模型的相似且有时卓越的精度。我们观察到,与较小模型相比,最大的530B参数模型在检测社会偏差方面明显更有效(与其他模型相比,在AUC度量上实现至少20%)。它还在几张拍摄设置中保持高AUC(掉落小于5%),其中标记的存储库减少到100个样本的少量。因此,大型预制语言模型使得更容易且更快地建立新的偏置探测器。
translated by 谷歌翻译
少量学习时,基于及时的方法很强劲。然而,Perez等人。 (2021年)最近对他们的表现产生了疑问,因为它们难以在“真实”的几次拍摄设置中获得良好的结果,其中提示和超级参数无法在DEV集上调整。鉴于此,我们对PET进行了广泛的研究,该方法将文本指令与基于示例的FENETUNING结合起来。我们表明,如果正确配置,宠物在真正的几次拍摄设置中强烈执行,即,没有开发装置。这对这种强大的表现至关重要是宠物智能处理多个提示的能力。然后,我们通过在RAFT上运行PET来将我们的调查结果置于真实世界的测试中,直接从现实的NLP应用程序采取的任务的基准,没有标记的开发或测试集。宠物在筏上实现了新的艺术状态,并且在11个任务中靠近非专家人类进行了近距离进行。这些结果表明,基于及时的学习者像宠物Excel这样的真正的几次拍摄学习和支持我们的信念,即从指示中学习的信念将在人类少量学习能力的路径上发挥重要作用。
translated by 谷歌翻译
构建用于仇恨语音检测的基准数据集具有各种挑战。首先,因为仇恨的言论相对少见,随机抽样对诠释的推文是非常效率的发现仇恨。为了解决此问题,先前的数据集通常仅包含匹配已知的“讨厌字”的推文。然而,将数据限制为预定义的词汇表可能排除我们寻求模型的现实世界现象的部分。第二个挑战是仇恨言论的定义往往是高度不同和主观的。具有多种讨论仇恨言论的注释者可能不仅可能不同意彼此不同意,而且还努力符合指定的标签指南。我们的重点识别是仇恨语音的罕见和主体性类似于信息检索(IR)中的相关性。此连接表明,可以有效地应用创建IR测试集合的良好方法,以创建更好的基准数据集以进行仇恨语音。为了智能和有效地选择要注释的推文,我们应用{\ em汇集}和{em主动学习}的标准IR技术。为了提高注释的一致性和价值,我们应用{\ EM任务分解}和{\ EM注释器理由}技术。我们在Twitter上共享一个用于仇恨语音检测的新基准数据集,其提供比以前的数据集更广泛的仇恨覆盖。在这些更广泛形式的仇恨中测试时,我们还表现出现有检测模型的准确性的戏剧性降低。注册器理由我们不仅可以证明标签决策证明,而且还可以在建模中实现未来的双重监督和/或解释生成的工作机会。我们的方法的进一步细节可以在补充材料中找到。
translated by 谷歌翻译
随着人工智能系统变得越来越强大和普遍,人们对机器的道德或缺乏道德的关注变得越来越关注。然而,向机器讲授道德是一项艰巨的任务,因为道德仍然是人类中最激烈的争论问题之一,更不用说AI了。但是,部署到数百万用户的现有AI系统已经在做出充满道德影响的决策,这构成了一个看似不可能的挑战:教学机器的道德意义,而人类继续努力努力。为了探索这一挑战,我们介绍了Delphi,这是一个基于深层神经网络的实验框架,直接训练了描述性道德判断,例如,“帮助朋友”通常是不错的,而“帮助朋友传播假新闻”不是。经验结果提供了对机器伦理的承诺和局限性的新见解。面对新的道德情况,德尔菲(Delphi)表现出强大的概括能力,而现成的神经网络模型表现出明显差的判断,包括不公正的偏见,证实了对明确教学机器的道德意义的必要性。然而,德尔菲并不完美,表现出对普遍性偏见和不一致的敏感性。尽管如此,我们还是展示了不完美的Delphi的积极用例,包括在其他不完美的AI系统中将其用作组件模型。重要的是,我们根据著名的道德理论来解释Delphi的运营化,这使我们提出了重要的未来研究问题。
translated by 谷歌翻译
Large "instruction-tuned" language models (finetuned to respond to instructions) have demonstrated a remarkable ability to generalize zero-shot to new tasks. Nevertheless, they depend heavily on human-written instruction data that is limited in quantity, diversity, and creativity, therefore hindering the generality of the tuned model. We introduce Self-Instruct, a framework for improving the instruction-following capabilities of pretrained language models by bootstrapping off its own generations. Our pipeline generates instruction, input, and output samples from a language model, then prunes them before using them to finetune the original model. Applying our method to vanilla GPT3, we demonstrate a 33% absolute improvement over the original model on Super-NaturalInstructions, on par with the performance of InstructGPT_001, which is trained with private user data and human annotations. For further evaluation, we curate a set of expert-written instructions for novel tasks, and show through human evaluation that tuning GPT3 with Self-Instruct outperforms using existing public instruction datasets by a large margin, leaving only a 5% absolute gap behind InstructGPT_001. Self-Instruct provides an almost annotation-free method for aligning pre-trained language models with instructions, and we release our large synthetic dataset to facilitate future studies on instruction tuning.
translated by 谷歌翻译
本文探讨了提高语言模型的零次学习能力的简单方法。我们表明,指令调整 - 通过对说明书中所述的任务集合微调语言模型 - 大幅提升零射门上看不见任务中的表现。我们采取预训练的语言模型和指令调整它通过自然语言指令模板语言表达了60NLP任务137B参数。我们评估这种指令调整模型,我们称之为FLAN,在看不见的任务类型。FLAN显着改善其未修饰的对应的性能和超过25的20个任务,我们评估零射门175BGPT-3。FLAN甚至GPT-3通过在安利,RTE,BoolQ,AI2-ARC,OpenbookQA和StoryCloze大比分胜过几拍。消融研究显示任务和模型的规模,这个数字是指令调整取得成功的关键组成部分。
translated by 谷歌翻译
诸如Openai的GPT-3等复杂的语言模型可以生成针对边缘化群体的可恶文本。鉴于此容量,我们有兴趣是否可以使用大型语言模型来识别仇恨言论,并将文本分类为性别歧视或种族主义?我们使用GPT-3识别性别歧视和种族主义文本段落,具有零,单次和几秒钟。我们发现,通过零射门和一拍学习,GPT-3可以识别性别歧视或种族主义文本,精度为48%和69%。随着少量学习和提示中的指令,模型的准确性可以高达78%。我们得出结论,大型语言模型在仇恨语音检测中发挥作用,并且具有进一步的开发语言模型可以用来抵制仇恨言论甚至自我警察。
translated by 谷歌翻译
How can we extend a pre-trained model to many language understanding tasks, without labeled or additional unlabeled data? Pre-trained language models (PLMs) have been effective for a wide range of NLP tasks. However, existing approaches either require fine-tuning on downstream labeled datasets or manually constructing proper prompts. In this paper, we propose nonparametric prompting PLM (NPPrompt) for fully zero-shot language understanding. Unlike previous methods, NPPrompt uses only pre-trained language models and does not require any labeled data or additional raw corpus for further fine-tuning, nor does it rely on humans to construct a comprehensive set of prompt label words. We evaluate NPPrompt against previous major few-shot and zero-shot learning methods on diverse NLP tasks: including text classification, text entailment, similar text retrieval, and paraphrasing. Experimental results demonstrate that our NPPrompt outperforms the previous best fully zero-shot method by big margins, with absolute gains of 12.8% in accuracy on text classification and 18.9% on the GLUE benchmark.
translated by 谷歌翻译
有毒语言检测系统通常会错误地将包含少数群体群体提及的毒性的错误标记文本,因为这些群体通常是在线仇恨的目标。这种对虚假相关性的过度依赖也导致系统在检测隐式有毒语言方面挣扎。为了帮助缓解这些问题,我们创建了Toxigen,这是一个新的大规模和机器生成的数据集,该数据集是274K有毒和良性陈述,约有13个少数群体。我们开发了一个基于示范的提示框架和一种对抗性分类器的解码方法,以使用大量预处理的语言模型生成微妙的有毒和良性文本。以这种方式控制机器的生成使毒素可以比以前的人写文本的资源更大的规模和大约人口组覆盖隐式有毒文本。我们对毒素的一个充满挑战的子集进行人体评估,发现注释者难以区分机器生成的文本和人类写的语言。我们还发现,94.5%的有毒例子被人类注释者标记为仇恨言论。我们使用三个公开可用的数据集,我们表明,对我们的数据进行毒性分类器的填充可以大大提高其在人体编写数据上的性能。我们还证明,毒素可用于抵抗机器生成的毒性,因为鉴定在我们的评估子集中大大改善了分类器。我们的代码和数据可以在https://github.com/microsoft/toxigen上找到。
translated by 谷歌翻译
利用自然语言任务描述提示输入已成为一种流行的机制,可以从大规模生成语言模型中引出合理准确的输出,几乎没有内心的监督。这也有助于深入了解语言模型如何纯粹捕获广泛的下游任务的语义,这些任务纯粹是在未标记文本的大规模集团上的自我监督的预训练中。这些模型自然也暴露于许多不良内容,如种族主义和性别歧视语言,并且有限地涉及沿着这些尺寸的模型的认识。在本文中,我们定义和全面评估了这种语言模型如何捕获四项任务的语义:诊断,识别,提取和重新展示。我们为这些任务定义了三个广泛的任务描述:语句,问题和完成,每个类内都有许多词汇变体。我们使用这些类和少量解码方法和少量示例的零任务描述来研究提示每项任务的功效。我们的分析表明,语言模型能够在不同偏差尺寸(例如性别和政治附属)上的不同程度上进行广泛变化的程度。我们相信我们的作品是通过量化当前自我监督目标的限制来实现这种社会学挑战性任务的局限性的重要阶段。
translated by 谷歌翻译
Recent work has shown that fine-tuning large pre-trained language models on a collection of tasks described via instructions, a.k.a. instruction-tuning, improves their zero and few-shot generalization to unseen tasks. However, there is a limited understanding of the performance trade-offs of different decisions made during the instruction-tuning process. These decisions include the scale and diversity of the instruction-tuning benchmark, different task sampling strategies, fine-tuning with and without demonstrations, training using specialized datasets for reasoning and dialogue, and finally, the fine-tuning objectives themselves. In this paper, we characterize the effect of instruction-tuning decisions on downstream task performance when scaling both model and benchmark sizes. To this end, we create OPT-IML Bench: a large benchmark for Instruction Meta-Learning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks, and prepare an evaluation framework to measure three types of model generalizations: to tasks from fully held-out categories, to held-out tasks from seen categories, and to held-out instances from seen tasks. Through the lens of this framework, we first present insights about instruction-tuning decisions as applied to OPT-30B and further exploit these insights to train OPT-IML 30B and 175B, which are instruction-tuned versions of OPT. OPT-IML demonstrates all three generalization abilities at both scales on four different evaluation benchmarks with diverse tasks and input formats -- PromptSource, FLAN, Super-NaturalInstructions, and UnifiedSKG. Not only does it significantly outperform OPT on all benchmarks but is also highly competitive with existing models fine-tuned on each specific benchmark. We release OPT-IML at both scales, together with the OPT-IML Bench evaluation framework.
translated by 谷歌翻译
As natural language processing (NLP) for gender bias becomes a significant interdisciplinary topic, the prevalent data-driven techniques such as large-scale language models suffer from data inadequacy and biased corpus, especially for languages with insufficient resources such as Chinese. To this end, we propose a Chinese cOrpus foR Gender bIas Probing and Mitigation CORGI-PM, which contains 32.9k sentences with high-quality labels derived by following an annotation scheme specifically developed for gender bias in the Chinese context. Moreover, we address three challenges for automatic textual gender bias mitigation, which requires the models to detect, classify, and mitigate textual gender bias. We also conduct experiments with state-of-the-art language models to provide baselines. To our best knowledge, CORGI-PM is the first sentence-level Chinese corpus for gender bias probing and mitigation.
translated by 谷歌翻译
GPT-3显示了培训的大规模语言模型(LMS)的卓越情调学习能力,培训数十亿规模数据。在这里,我们解决了GPT-3纸张报告的一些剩余问题,例如非英语LM,不同大小模型的性能,以及最近引入的迅速优化对上下文学习的效果。为实现这一目标,我们介绍了HyperClova,一个韩国VPT-3的韩国变体训练在一个以韩国为中心的560b标准的令牌。通过我们的韩国特定标记化,HyperClova与我们的培训配置增强,显示了韩国各种下游任务的最先进的上下游零射击和几秒钟学习表演。此外,我们展示了基于及时的学习的性能优势,并演示如何集成到迅速的工程管道中。然后,我们讨论了通过引入Hyperclova Studio,互动提示工程界面向ML的非专家提供AI原型设计能力来实现No Code AI范例的可能性。最后,我们展示了我们具有三个成功的内部应用程序的方法的潜力。
translated by 谷歌翻译
Meta-training, which fine-tunes the language model (LM) on various downstream tasks by maximizing the likelihood of the target label given the task instruction and input instance, has improved the zero-shot task generalization performance. However, meta-trained LMs still struggle to generalize to challenging tasks containing novel labels unseen during meta-training. In this paper, we propose Flipped Learning, an alternative method of meta-training which trains the LM to generate the task instruction given the input instance and label. During inference, the LM trained with Flipped Learning, referred to as Flipped, selects the label option that is most likely to generate the task instruction. On 14 tasks of the BIG-bench benchmark, the 11B-sized Flipped outperforms zero-shot T0-11B and even a 16 times larger 3-shot GPT-3 (175B) on average by 8.4% and 9.7% points, respectively. Flipped gives particularly large improvements on tasks with unseen labels, outperforming T0-11B by up to +20% average F1 score. This indicates that the strong task generalization of Flipped comes from improved generalization to novel labels. We release our code at https://github.com/seonghyeonye/Flipped-Learning.
translated by 谷歌翻译
We introduce TeSS (Text Similarity Comparison using Sentence Encoder), a framework for zero-shot classification where the assigned label is determined by the embedding similarity between the input text and each candidate label prompt. We leverage representations from sentence encoders optimized to locate semantically similar samples closer to each other in embedding space during pre-training. The label prompt embeddings serve as prototypes of their corresponding class clusters. Furthermore, to compensate for the potentially poorly descriptive labels in their original format, we retrieve semantically similar sentences from external corpora and additionally use them with the original label prompt (TeSS-R). TeSS outperforms strong baselines on various closed-set and open-set classification datasets under zero-shot setting, with further gains when combined with label prompt diversification through retrieval. These results are robustly attained to verbalizer variations, an ancillary benefit of using a bi-encoder. Altogether, our method serves as a reliable baseline for zero-shot classification and a simple interface to assess the quality of sentence encoders.
translated by 谷歌翻译
我们研究了检查问题的事实,旨在识别给定索赔的真实性。具体而言,我们专注于事实提取和验证(发烧)及其伴随数据集的任务。该任务包括从维基百科检索相关文件(和句子)并验证文件中的信息是否支持或驳斥所索赔的索赔。此任务至关重要,可以是假新闻检测和医疗索赔验证等应用程序块。在本文中,我们以通过以结构化和全面的方式呈现文献来更好地了解任务的挑战。我们通过分析不同方法的技术视角并讨论发热数据集的性能结果,描述了所提出的方法,这是最熟悉的和正式结构化的数据集,就是事实提取和验证任务。我们还迄今为止迄今为止确定句子检索组件的有益损失函数的最大实验研究。我们的分析表明,采样负句对于提高性能并降低计算复杂性很重要。最后,我们描述了开放的问题和未来的挑战,我们激励了未来的任务研究。
translated by 谷歌翻译
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF-better few-shot fine-tuning of language models 1 -a suite of simple and complementary techniques for finetuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning. 2 * The first two authors contributed equally. 1 Alternatively, language models' best friends forever. 2 Our implementation is publicly available at https:// github.com/princeton-nlp/LM-BFF.
translated by 谷歌翻译
数据增强是通过转换为机器学习的人工创建数据的人工创建,是一个跨机器学习学科的研究领域。尽管它对于增加模型的概括功能很有用,但它还可以解决许多其他挑战和问题,从克服有限的培训数据到正规化目标到限制用于保护隐私的数据的数量。基于对数据扩展的目标和应用的精确描述以及现有作品的分类法,该调查涉及用于文本分类的数据增强方法,并旨在为研究人员和从业者提供简洁而全面的概述。我们将100多种方法划分为12种不同的分组,并提供最先进的参考文献来阐述哪种方法可以通过将它们相互关联,从而阐述了哪种方法。最后,提供可能构成未来工作的基础的研究观点。
translated by 谷歌翻译
Recent directions for offensive language detection are hierarchical modeling, identifying the type and the target of offensive language, and interpretability with offensive span annotation and prediction. These improvements are focused on English and do not transfer well to other languages because of cultural and linguistic differences. In this paper, we present the Korean Offensive Language Dataset (KOLD) comprising 40,429 comments, which are annotated hierarchically with the type and the target of offensive language, accompanied by annotations of the corresponding text spans. We collect the comments from NAVER news and YouTube platform and provide the titles of the articles and videos as the context information for the annotation process. We use these annotated comments as training data for Korean BERT and RoBERTa models and find that they are effective at offensiveness detection, target classification, and target span detection while having room for improvement for target group classification and offensive span detection. We discover that the target group distribution differs drastically from the existing English datasets, and observe that providing the context information improves the model performance in offensiveness detection (+0.3), target classification (+1.5), and target group classification (+13.1). We publicly release the dataset and baseline models.
translated by 谷歌翻译
Task agnostic generative pretraining (GPT) has recently proved promising for zero- and few-shot learning, gradually diverting attention from the expensive supervised learning paradigm. Although the community is accumulating knowledge as to capabilities of English-language autoregressive models such as GPT-3 adopting this generative approach, scholarship about these models remains acutely Anglocentric. Consequently, the community currently has serious gaps in its understanding of this class of models, their potential, and their societal impacts in diverse settings, linguistic traditions, and cultures. To alleviate this issue for Arabic, a collection of diverse languages and language varieties with more than $400$ million population, we introduce JASMINE, a suite of powerful Arabic autoregressive Transformer language models ranging in size between 300 million-13 billion parameters. We pretrain our new models with large amounts of diverse data (400GB of text) from different Arabic varieties and domains. We evaluate JASMINE extensively in both intrinsic and extrinsic settings, using a comprehensive benchmark for zero- and few-shot learning across a wide range of NLP tasks. We also carefully develop and release a novel benchmark for both automated and human evaluation of Arabic autoregressive models focused at investigating potential social biases, harms, and toxicity in these models. We aim to responsibly release our models with interested researchers, along with code for experimenting with them
translated by 谷歌翻译