诸如Openai的GPT-3等复杂的语言模型可以生成针对边缘化群体的可恶文本。鉴于此容量,我们有兴趣是否可以使用大型语言模型来识别仇恨言论,并将文本分类为性别歧视或种族主义?我们使用GPT-3识别性别歧视和种族主义文本段落,具有零,单次和几秒钟。我们发现,通过零射门和一拍学习,GPT-3可以识别性别歧视或种族主义文本,精度为48%和69%。随着少量学习和提示中的指令,模型的准确性可以高达78%。我们得出结论,大型语言模型在仇恨语音检测中发挥作用,并且具有进一步的开发语言模型可以用来抵制仇恨言论甚至自我警察。
translated by 谷歌翻译
社交媒体平台上的滥用内容的增长增加对在线用户的负面影响。对女同性恋,同性恋者,跨性别或双性恋者的恐惧,不喜欢,不适或不疑虑被定义为同性恋/转铁症。同性恋/翻译语音是一种令人反感的语言,可以总结为针对LGBT +人的仇恨语音,近年来越来越受到兴趣。在线同性恋恐惧症/ Transphobobia是一个严重的社会问题,可以使网上平台与LGBT +人有毒和不受欢迎,同时还试图消除平等,多样性和包容性。我们为在线同性恋和转鸟以及专家标记的数据集提供了新的分类分类,这将允许自动识别出具有同种异体/传递内容的数据集。我们受过教育的注释器并以综合的注释规则向他们提供,因为这是一个敏感的问题,我们以前发现未受训练的众包注释者因文化和其他偏见而诊断倡导性的群体。数据集包含15,141个注释的多语言评论。本文介绍了构建数据集,数据的定性分析和注册间协议的过程。此外,我们为数据集创建基线模型。据我们所知,我们的数据集是第一个已创建的数据集。警告:本文含有明确的同性恋,转基因症,刻板印象的明确陈述,这可能对某些读者令人痛苦。
translated by 谷歌翻译
We demonstrate that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even becoming competitive with prior state-ofthe-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous nonsparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks. We also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora.
translated by 谷歌翻译
我们建议并探讨可以将语言模型作为社会科学研究中特定人类亚人群的有效代理进行研究的可能性。人工智能工具的实践和研究应用有时受到有问题的偏见(例如种族主义或性别歧视)的限制,这些偏见通常被视为模型的统一特性。我们表明,一个这样的工具中的“算法偏见”(GPT-3语言模型)既是细粒度又是人口统计相关的,这意味着适当的条件会导致其准确地仿真来自各种人类的响应分布亚组。我们将此属性称为“算法忠诚度”,并在GPT-3中探索其范围。我们通过将模型调节在美国进行的多项大型调查中的数千个社会人口统计背景故事中调节,从而创建“硅样本”。然后,我们比较硅和人类样品,以证明GPT-3中包含的信息远远超出了表面相似性。它是细微的,多方面的,并反映了特征人类态度的思想,态度和社会文化背景之间的复杂相互作用。我们建议,具有足够算法的忠诚度的语言模型构成了一种新颖而有力的工具,可以促进各种学科的人类和社会的理解。
translated by 谷歌翻译
Recent work has shown that fine-tuning large pre-trained language models on a collection of tasks described via instructions, a.k.a. instruction-tuning, improves their zero and few-shot generalization to unseen tasks. However, there is a limited understanding of the performance trade-offs of different decisions made during the instruction-tuning process. These decisions include the scale and diversity of the instruction-tuning benchmark, different task sampling strategies, fine-tuning with and without demonstrations, training using specialized datasets for reasoning and dialogue, and finally, the fine-tuning objectives themselves. In this paper, we characterize the effect of instruction-tuning decisions on downstream task performance when scaling both model and benchmark sizes. To this end, we create OPT-IML Bench: a large benchmark for Instruction Meta-Learning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks, and prepare an evaluation framework to measure three types of model generalizations: to tasks from fully held-out categories, to held-out tasks from seen categories, and to held-out instances from seen tasks. Through the lens of this framework, we first present insights about instruction-tuning decisions as applied to OPT-30B and further exploit these insights to train OPT-IML 30B and 175B, which are instruction-tuned versions of OPT. OPT-IML demonstrates all three generalization abilities at both scales on four different evaluation benchmarks with diverse tasks and input formats -- PromptSource, FLAN, Super-NaturalInstructions, and UnifiedSKG. Not only does it significantly outperform OPT on all benchmarks but is also highly competitive with existing models fine-tuned on each specific benchmark. We release OPT-IML at both scales, together with the OPT-IML Bench evaluation framework.
translated by 谷歌翻译
大型预先训练的语言模型已经显示了几次拍摄学习的承诺,只提供了几个任务特定示例给出了基于文本的任务。款式将很快解决到目前为止为人类研究助理保留的分类任务吗?现有的基准标记不设计用于衡量应用设置的进度,因此不要直接回答这个问题。 RAFT基准(现实世界注释的少量拍摄任务)侧重于自然发生的任务,并使用镜像部署的评估设置。 RAFT的基线评估揭示了当前技术斗争的地区:推理在许多班级的长篇文章和任务上。人类基线表明,非专家人类难以反映出一些分类任务,反映了现实世界的价值有时依赖于域名专业知识。甚至非专业人类基线F1分数超过GPT-3平均为0.11。 RAFT DataSets和排行榜将跟踪哪些模型改进在https://raft.elict.org中转化为现实世界的优势。
translated by 谷歌翻译
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
translated by 谷歌翻译
随着人工智能系统变得越来越强大和普遍,人们对机器的道德或缺乏道德的关注变得越来越关注。然而,向机器讲授道德是一项艰巨的任务,因为道德仍然是人类中最激烈的争论问题之一,更不用说AI了。但是,部署到数百万用户的现有AI系统已经在做出充满道德影响的决策,这构成了一个看似不可能的挑战:教学机器的道德意义,而人类继续努力努力。为了探索这一挑战,我们介绍了Delphi,这是一个基于深层神经网络的实验框架,直接训练了描述性道德判断,例如,“帮助朋友”通常是不错的,而“帮助朋友传播假新闻”不是。经验结果提供了对机器伦理的承诺和局限性的新见解。面对新的道德情况,德尔菲(Delphi)表现出强大的概括能力,而现成的神经网络模型表现出明显差的判断,包括不公正的偏见,证实了对明确教学机器的道德意义的必要性。然而,德尔菲并不完美,表现出对普遍性偏见和不一致的敏感性。尽管如此,我们还是展示了不完美的Delphi的积极用例,包括在其他不完美的AI系统中将其用作组件模型。重要的是,我们根据著名的道德理论来解释Delphi的运营化,这使我们提出了重要的未来研究问题。
translated by 谷歌翻译
最近已被证明大型语言模型在各种任务集中获得合理的零射普通化(Brown等,2020)。它已经假设这是语言模型的隐式多任务学习的结果,在语言模型中的预押(Radford等,2019)。可以通过明确的多任务学习直接引起零拍常规化?为了以缩放测试这个问题,我们开发一个系统,以便轻松地将任何自然语言任务映射到人类可读的提示表单中。我们转换一组大量的监督数据集,每个数据集都有多个提示,具有不同的措辞。这些提示的数据集允许基准测试模型执行完全看不见的任务的能力。我们介绍了一个普拉克尔编码器 - 解码器模型(Raffel等,2020; Lester等,2021),覆盖各种任务。该模型在多个标准数据集中达到强大的零点性能,通常优于其尺寸的型号超过16倍。此外,我们的方法对来自Big-替补基准测试的任务子集具有强烈性能,优于其尺寸的6倍。所有提示和培训的型号都可以在https://github.com/ bigscience-workshop / protectsource / httpsource / https://huggingface.co/bigscience/t0pp。
translated by 谷歌翻译
Text classifiers have promising applications in high-stake tasks such as resume screening and content moderation. These classifiers must be fair and avoid discriminatory decisions by being invariant to perturbations of sensitive attributes such as gender or ethnicity. However, there is a gap between human intuition about these perturbations and the formal similarity specifications capturing them. While existing research has started to address this gap, current methods are based on hardcoded word replacements, resulting in specifications with limited expressivity or ones that fail to fully align with human intuition (e.g., in cases of asymmetric counterfactuals). This work proposes novel methods for bridging this gap by discovering expressive and intuitive individual fairness specifications. We show how to leverage unsupervised style transfer and GPT-3's zero-shot capabilities to automatically generate expressive candidate pairs of semantically similar sentences that differ along sensitive attributes. We then validate the generated pairs via an extensive crowdsourcing study, which confirms that a lot of these pairs align with human intuition about fairness in the context of toxicity classification. Finally, we show how limited amounts of human feedback can be leveraged to learn a similarity specification that can be used to train downstream fairness-aware models.
translated by 谷歌翻译
我们介绍了Sparrow,这是一个寻求信息的对话代理,与提示的语言模型基线相比,训练有素,更有帮助,正确和无害。我们使用从人类反馈中的强化学习来培训我们的模型,以帮助人类评估者判断代理人的行为。首先,为了使我们的代理人更有帮助和无害,我们将良好对话的要求分解为代理人应遵循的自然语言规则,并分别向评估者询问每个规则。我们证明,这种崩溃使我们能够收集对代理行为的更多针对性的人类判断,并允许更有效的规则条件奖励模型。其次,我们的代理商在收集对模型声明的偏好判决时提供了支持事实主张的来源的证据。对于事实问题,麻雀提供的证据支持了78%的时间。比基线比基线更享受麻雀,同时对人类的对抗性探测更具弹性,在探测时只有8%的时间违反了我们的规则。最后,我们进行了广泛的分析,表明尽管我们的模型学会遵守我们的规则,但它可以表现出分布偏见。
translated by 谷歌翻译
构建用于仇恨语音检测的基准数据集具有各种挑战。首先,因为仇恨的言论相对少见,随机抽样对诠释的推文是非常效率的发现仇恨。为了解决此问题,先前的数据集通常仅包含匹配已知的“讨厌字”的推文。然而,将数据限制为预定义的词汇表可能排除我们寻求模型的现实世界现象的部分。第二个挑战是仇恨言论的定义往往是高度不同和主观的。具有多种讨论仇恨言论的注释者可能不仅可能不同意彼此不同意,而且还努力符合指定的标签指南。我们的重点识别是仇恨语音的罕见和主体性类似于信息检索(IR)中的相关性。此连接表明,可以有效地应用创建IR测试集合的良好方法,以创建更好的基准数据集以进行仇恨语音。为了智能和有效地选择要注释的推文,我们应用{\ em汇集}和{em主动学习}的标准IR技术。为了提高注释的一致性和价值,我们应用{\ EM任务分解}和{\ EM注释器理由}技术。我们在Twitter上共享一个用于仇恨语音检测的新基准数据集,其提供比以前的数据集更广泛的仇恨覆盖。在这些更广泛形式的仇恨中测试时,我们还表现出现有检测模型的准确性的戏剧性降低。注册器理由我们不仅可以证明标签决策证明,而且还可以在建模中实现未来的双重监督和/或解释生成的工作机会。我们的方法的进一步细节可以在补充材料中找到。
translated by 谷歌翻译
由于细微偏见,主观性和难以在规模上获得良好质量的数据集,尤其考虑到社会偏见和社会的不断变化本质,检测文本中的社会偏见是挑战。为了解决这些挑战,我们提出了一些基于指令的基于指令的方法,以提示预先接受预先接受的语言模型(LMS)。我们从最接近查询的小型支持存储库中选择一些标签平衡的示例,以便在嵌入空间中标记。然后,我们向LM提供由标记示例的此子集的指令,查询文本被分类,偏差定义,并提示它做出决定。我们证明了几次上下文中使用的大型LMS可以检测不同类型的细粒度偏差,具有与微调模型的相似且有时卓越的精度。我们观察到,与较小模型相比,最大的530B参数模型在检测社会偏差方面明显更有效(与其他模型相比,在AUC度量上实现至少20%)。它还在几张拍摄设置中保持高AUC(掉落小于5%),其中标记的存储库减少到100个样本的少量。因此,大型预制语言模型使得更容易且更快地建立新的偏置探测器。
translated by 谷歌翻译
语言模型可以根据给定的文化背景产生有害和偏置的输出并表现出不良行为。我们提出了一种将语言模型适应社会(PALM)与值目标数据集的过程,以通过在反映预定的一组目标值集合的数据集上进行制备和微调来显着地改变模型行为的迭代过程。我们使用三个指标评估我们的进程:具有人类评估的定量指标,将输出遵守目标值,毒性评分对产出;和定性度量分析与给定社会类别相关的最常见的单词。通过每次迭代,我们根据来自评估的观察到的缺点添加其他培训数据集示例。与基线和控制模型相比,PALMS在所有指标上显着更好地为广泛的GPT-3语言模型尺寸进行了基线和控制模型,而不会影响能力完整性。我们发现PALMS的有效性随模型规模而增加。我们表明,显着调整语言模型行为与小型手腕策划数据集是可行的。
translated by 谷歌翻译
在本文中,我们讨论了用分层,细粒度标记标记不同类型的侵略和“上下文”的分层的多语言数据集的开发。这里,这里,这里由对话线程定义,其中发生特定的评论以及评论对先前注释执行的话语角色的“类型”。在此处讨论的初始数据集(并作为逗号@图标共享任务的一部分提供),包括四种语言的15,000名注释评论 - Meitei,Bangla,Hindi和印度英语 - 从各种社交媒体平台收集作为Youtube,Facebook,Twitter和电报。正如通常在社交媒体网站上,大量这些评论都是多语种的,主要是与英语混合的代码混合。本文给出了用于注释的标签的详细描述以及开发多标签的过程的过程,该方法可用于标记具有各种侵略和偏差的评论,包括性别偏见,宗教不宽容(称为标签中的公共偏见),类/种姓偏见和民族/种族偏见。我们还定义并讨论已用于标记通过评论执行的异常发挥作用的标记的标签,例如攻击,防御等。我们还对数据集的统计分析以及我们的基线实验的结果进行了发展使用DataSet开发的自动攻击识别系统。
translated by 谷歌翻译
在基于文本的分类器中测试公平性问题的一种常见方法是通过使用反事实来:如果更改输入中的敏感属性,则分类器输出是否会更改?现有的反事实生成方法通常依赖于单词列表或模板,产生不考虑语法,上下文或微妙敏感属性引用的简单反事实,并且可能会错过WordList创建者未考虑的问题。在本文中,我们介绍了一项为克服这些缺点而产生的反事实的任务,并证明了如何利用大型语言模型(LLM)来在此任务上取得进展。我们表明,这种基于LLM的方法可以产生现有方法无法实现的复杂反事实,从而比较了民事评论数据集中各种反事实生成方法的性能,并在评估毒性分类器时显示出它们的价值。
translated by 谷歌翻译
The shift of public debate to the digital sphere has been accompanied by a rise in online hate speech. While many promising approaches for hate speech classification have been proposed, studies often focus only on a single language, usually English, and do not address three key concerns: post-deployment performance, classifier maintenance and infrastructural limitations. In this paper, we introduce a new human-in-the-loop BERT-based hate speech classification pipeline and trace its development from initial data collection and annotation all the way to post-deployment. Our classifier, trained using data from our original corpus of over 422k examples, is specifically developed for the inherently multilingual setting of Switzerland and outperforms with its F1 score of 80.5 the currently best-performing BERT-based multilingual classifier by 5.8 F1 points in German and 3.6 F1 points in French. Our systematic evaluations over a 12-month period further highlight the vital importance of continuous, human-in-the-loop classifier maintenance to ensure robust hate speech classification post-deployment.
translated by 谷歌翻译
Are large language models (LLMs) like GPT-3 psychologically safe? In this work, we design unbiased prompts to evaluate LLMs systematically from a psychological perspective. Firstly, we test the personality traits of three different LLMs with Short Dark Triad (SD-3) and Big Five Inventory (BFI). We find all of them show higher scores on SD-3 than the human average, indicating a relatively darker personality. Furthermore, LLMs like InstructGPT and FLAN-T5, which are fine-tuned with safety metrics, do not necessarily have more positive personalities. They score higher on Machiavellianism and Narcissism than GPT-3. Secondly, we test the LLMs in GPT-3 series on well-being tests to study the impact of fine-tuning with more training data. Interestingly, we observe a continuous increase in well-being scores from GPT-3 to InstructGPT. Following the observations, we show that instruction-finetune FLAN-T5 with positive answers in BFI can effectively improve the model from a psychological perspective. Finally, we call on the community to evaluate and improve LLMs' safety systematically instead of at the sentence level only.
translated by 谷歌翻译
本文探讨了提高语言模型的零次学习能力的简单方法。我们表明,指令调整 - 通过对说明书中所述的任务集合微调语言模型 - 大幅提升零射门上看不见任务中的表现。我们采取预训练的语言模型和指令调整它通过自然语言指令模板语言表达了60NLP任务137B参数。我们评估这种指令调整模型,我们称之为FLAN,在看不见的任务类型。FLAN显着改善其未修饰的对应的性能和超过25的20个任务,我们评估零射门175BGPT-3。FLAN甚至GPT-3通过在安利,RTE,BoolQ,AI2-ARC,OpenbookQA和StoryCloze大比分胜过几拍。消融研究显示任务和模型的规模,这个数字是指令调整取得成功的关键组成部分。
translated by 谷歌翻译
大型语言模型会产生类似人类的文本,这些文本推动了越来越多的应用。但是,最近的文献以及越来越多的现实世界观察表明,这些模型可以产生有毒,有偏见,不真实或其他有害的语言。尽管正在进行评估语言模型危害的工作,但要远见卓识转换出可能出现的危害可能会引起严格的基准。为了促进这种翻译,我们概述了六种表征有害文本的方式,这些方法在设计新基准时值得明确考虑。然后,我们将这些特征用作镜头来识别现有基准中的趋势和差距。最后,我们将它们应用于视角API的案例研究,这是一种毒性分类器,被广泛用于HARS基准。我们的特征提供了一块桥梁,可以在远见和有效评估之间转化。
translated by 谷歌翻译