树合奏方法如随机森林[Breiman,2001]非常受欢迎,以处理高维表格数据集,特别是因为它们的预测精度良好。然而,当机器学习用于决策问题时,由于开明的决策需要对算法预测过程的深入理解来实现最佳预测程序的解决可能是不合理的。不幸的是,由于他们的预测结果从平均数百个决策树的预测结果,随机森林并不是本质上可解释的。在这种所谓的黑盒算法上获得知识的经典方法是计算可变重要性,这些重点是评估每个输入变量的预测影响。然后使用可变重要性对等变量进行排名或选择变量,从而在数据分析中发挥着重要作用。然而,没有理由使用随机森林变量以这种方式:我们甚至不知道这些数量估计。在本文中,我们分析了两个众所周知的随机森林可变重大之一,平均减少杂质(MDI)。我们证明,如果输入变量是独立的并且在没有相互作用的情况下,MDI提供了输出的方差分解,其中清楚地识别了每个变量的贡献。我们还研究表现出输入变量或交互之间的依赖性的模型,其中变量重要性本质上是不明的。我们的分析表明,与一棵树相比,可能存在使用森林的一些好处。
translated by 谷歌翻译
可变重要性措施是分析随机林的黑盒机制的主要工具。虽然平均值降低精度(MDA)被广泛接受作为随机森林最有效的可变重要性措施,但对其统计特性知之甚少。实际上,确切的MDA定义在主随机林软件上变化。在本文中,我们的目标是严格分析主要MDA实施的行为。因此,我们在数学上正式地形化各种实施的MDA算法,然后在样本量增加时建立限制。特别是,我们在三个组件中分解了这些限制:第一个与Sobol指数有关,这是对响应方差的协变度贡献的明确定义措施,广泛应用于敏感性分析领域,而不是TheThird术语,谁的价值随着协变量的依赖而增加。因此,我们理论上证明了MDA在协变者依赖时,MDA不会瞄准正确的数量,这是实验发现的事实。为了解决这个问题,我们为随机林,Sobol-MDA定义了一个新的重要性测量,它修复了原始MDA的缺陷。我们证明了Sobol-MDA的一致性,并表明Sobol-MDA在模拟和实际数据上经验胜过其竞争对手。 R和C ++中的开源实现可在线获取。
translated by 谷歌翻译
由于其出色的经验表现,随机森林是过去十年中使用的机器学习方法之一。然而,由于其黑框的性质,在许多大数据应用中很难解释随机森林的结果。量化各个特征在随机森林中的实用性可以大大增强其解释性。现有的研究表明,一些普遍使用的特征对随机森林的重要性措施遭受了偏见问题。此外,对于大多数现有方法,缺乏全面的规模和功率分析。在本文中,我们通过假设检验解决了问题,并提出了一个自由化特征 - 弥散性相关测试(事实)的框架,以评估具有偏见性属性的随机森林模型中给定特征的重要性,我们零假设涉及该特征是否与所有其他特征有条件地独立于响应。关于高维随机森林一致性的一些最新发展,对随机森林推断的这种努力得到了赋予的能力。在存在功能依赖性的情况下,我们的事实测试的香草版可能会遇到偏见问题。我们利用偏置校正的不平衡和调节技术。我们通过增强功率的功能转换将合奏的想法进一步纳入事实统计范围。在相当普遍的具有依赖特征的高维非参数模型设置下,我们正式确定事实可以提供理论上合理的随机森林具有P值,并通过非催化分析享受吸引人的力量。新建议的方法的理论结果和有限样本优势通过几个模拟示例和与Covid-19的经济预测应用进行了说明。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
随机森林仍然是最受欢迎的现成监督学习算法之一。尽管他们记录了良好的经验成功,但直到最近,很少有很少的理论结果来描述他们的表现和行为。在这项工作中,我们通过建立随机森林和其他受监督学习集合的融合率来推动最近的一致性和渐近正常的工作。我们培养了广义U形统计的概念,并显示在此框架内,随机森林预测可能对比以前建立的较大的子样本尺寸可能保持渐近正常。我们还提供Berry-esseen的界限,以量化这种收敛的速度,使得分列大小的角色和确定随机森林预测分布的树木的角色。
translated by 谷歌翻译
Many scientific and engineering challenges-ranging from personalized medicine to customized marketing recommendations-require an understanding of treatment effect heterogeneity. In this paper, we develop a non-parametric causal forest for estimating heterogeneous treatment effects that extends Breiman's widely used random forest algorithm. In the potential outcomes framework with unconfoundedness, we show that causal forests are pointwise consistent for the true treatment effect, and have an asymptotically Gaussian and centered sampling distribution. We also discuss a practical method for constructing asymptotic confidence intervals for the true treatment effect that are centered at the causal forest estimates. Our theoretical results rely on a generic Gaussian theory for a large family of random forest algorithms. To our knowledge, this is the first set of results that allows any type of random forest, including classification and regression forests, to be used for provably valid statistical inference. In experiments, we find causal forests to be substantially more powerful than classical methods based on nearest-neighbor matching, especially in the presence of irrelevant covariates.
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
开发了一种使用多个辅助变量的非静止空间建模算法。它将Geodatistics与Simitile随机林结合起来,以提供一种新的插值和随机仿真算法。本文介绍了该方法,并表明它具有与施加地统计学建模和定量随机森林的那些相似的一致性结果。该方法允许嵌入更简单的插值技术,例如Kriging,以进一步调节模型。该算法通过估计每个目标位置处的目标变量的条件分布来工作。这种分布的家庭称为目标变量的包络。由此,可以获得空间估计,定量和不确定性。还开发了一种从包络产生条件模拟的算法。随着它们从信封中的样本,因此通过相对变化的次要变量,趋势和可变性的相对变化局部地影响。
translated by 谷歌翻译
为了解释任何模型的决定,我们延长了概率充分解释(P-SE)的概念。对于每个实例,该方法选择足以产生具有高概率的相同预测的最小特征子集,同时删除其他特征。 P-SE的关键是计算保持相同预测的条件概率。因此,我们通过随机林为任何数据$(\ boldsymbol {x},y)$,并通过理论分析来介绍这种概率的准确和快速估计器,并通过理论分析来展示其一致性的理论分析。结果,我们将P-SE扩展到回归问题。此外,我们处理非二进制特征,而无需学习$ x $的分发,也不会使模型进行预测。最后,我们基于P-SE介绍基于数分的回归/分类的解释,并比较我们的方法W.R.T其他可解释的AI方法。这些方法是公开可用作\ url {www.github.com/salimamoukou/acv00}的python包。
translated by 谷歌翻译
Motivated by alignment of correlated sparse random graphs, we introduce a hypothesis testing problem of deciding whether or not two random trees are correlated. We obtain sufficient conditions under which this testing is impossible or feasible. We propose MPAlign, a message-passing algorithm for graph alignment inspired by the tree correlation detection problem. We prove MPAlign to succeed in polynomial time at partial alignment whenever tree detection is feasible. As a result our analysis of tree detection reveals new ranges of parameters for which partial alignment of sparse random graphs is feasible in polynomial time. We then conjecture that graph alignment is not feasible in polynomial time when the associated tree detection problem is impossible. If true, this conjecture together with our sufficient conditions on tree detection impossibility would imply the existence of a hard phase for graph alignment, i.e. a parameter range where alignment cannot be done in polynomial time even though it is known to be feasible in non-polynomial time.
translated by 谷歌翻译
标签排名(LR)对应于学习一个假设的问题,以通过有限一组标签将功能映射到排名。我们采用了对LR的非参数回归方法,并获得了这一基本实际问题的理论绩效保障。我们在无噪声和嘈杂的非参数回归设置中介绍了一个用于标签排名的生成模型,并为两种情况下提供学习算法的示例复杂性界限。在无噪声环境中,我们研究了全排序的LR问题,并在高维制度中使用决策树和随机林提供计算有效的算法。在嘈杂的环境中,我们考虑使用统计观点的不完整和部分排名的LR更通用的情况,并使用多种多组分类的一种方法获得样本复杂性范围。最后,我们与实验补充了我们的理论贡献,旨在了解输入回归噪声如何影响观察到的输出。
translated by 谷歌翻译
在本文中,我们对在表格数据的情况下进行了详尽的理论分析。我们证明,在较大的样本限制中,可以按照算法参数的函数以及与黑框模型相关的一些期望计算来计算表格石灰提供的可解释系数。当要解释的函数具有一些不错的代数结构(根据坐标的子集,线性,乘法或稀疏)时,我们的分析提供了对Lime提供的解释的有趣见解。这些可以应用于一系列机器学习模型,包括高斯内核或卡车随机森林。例如,对于线性函数,我们表明Lime具有理想的属性,可以提供与函数系数成正比的解释,以解释并忽略该函数未使用的坐标来解释。对于基于分区的回归器,另一方面,我们表明石灰会产生可能提供误导性解释的不希望的人工制品。
translated by 谷歌翻译
我们派生并分析了一种用于估计有限簇树中的所有分裂的通用,递归算法以及相应的群集。我们进一步研究了从内核密度估计器接收级别设置估计时该通用聚类算法的统计特性。特别是,我们推出了有限的样本保证,一致性,收敛率以及用于选择内核带宽的自适应数据驱动策略。对于这些结果,我们不需要与H \“{o}连续性等密度的连续性假设,而是仅需要非参数性质的直观几何假设。
translated by 谷歌翻译
经典的错误发现率(FDR)控制程序提供了强大而可解释的保证,而它们通常缺乏灵活性。另一方面,最近的机器学习分类算法是基于随机森林(RF)或神经网络(NN)的算法,具有出色的实践表现,但缺乏解释和理论保证。在本文中,我们通过引入新的自适应新颖性检测程序(称为Adadetect)来使这两个相遇。它将多个测试文献的最新作品范围扩展到高维度的范围,尤其是Yang等人的范围。 (2021)。显示AD​​ADETECT既可以强烈控制FDR,又具有在特定意义上模仿甲骨文之一的力量。理论结果,几个基准数据集上的数值实验以及对天体物理数据的应用,我们的方法的兴趣和有效性得到了证明。特别是,虽然可以将AdadEtect与任何分类器结合使用,但它在带有RF的现实世界数据集以及带有NN的图像上特别有效。
translated by 谷歌翻译
近似消息传递(AMP)是解决高维统计问题的有效迭代范式。但是,当迭代次数超过$ o \ big(\ frac {\ log n} {\ log log \ log \ log n} \时big)$(带有$ n $问题维度)。为了解决这一不足,本文开发了一个非吸附框架,用于理解峰值矩阵估计中的AMP。基于AMP更新的新分解和可控的残差项,我们布置了一个分析配方,以表征在存在独立初始化的情况下AMP的有限样本行为,该过程被进一步概括以进行光谱初始化。作为提出的分析配方的两个具体后果:(i)求解$ \ mathbb {z} _2 $同步时,我们预测了频谱初始化AMP的行为,最高为$ o \ big(\ frac {n} {\ mathrm {\ mathrm { poly} \ log n} \ big)$迭代,表明该算法成功而无需随后的细化阶段(如最近由\ citet {celentano2021local}推测); (ii)我们表征了稀疏PCA中AMP的非反应性行为(在尖刺的Wigner模型中),以广泛的信噪比。
translated by 谷歌翻译
我们考虑与高斯数据的高维线性回归中的插值学习,并在类高斯宽度方面证明了任意假设类别中的内插器的泛化误差。将通用绑定到欧几里德常规球恢复了Bartlett等人的一致性结果。(2020)对于最小规范内插器,并确认周等人的预测。(2020)在高斯数据的特殊情况下,对于近乎最小常态的内插器。我们通过将其应用于单位来证明所界限的一般性,从而获得最小L1-NORM Interpoolator(基础追踪)的新型一致性结果。我们的结果表明,基于规范的泛化界限如何解释并用于分析良性过度装备,至少在某些设置中。
translated by 谷歌翻译
我们提出了一种无监督的树,用于推断I.I.D的基础采样分布。基于拟合添加树的样本,以类似于监督的树木增强的时尚。算法的积分是概率分布的“添加”的新概念,该概率分布导致“残差”的连贯概念,即从观察值中减去概率分布,从后者的采样分布中去除分布结构。我们表明,由于单变量CDF的几种“类似”特性,这些概念通过累积分布函数(CDF)转换和组成自然出现。尽管传统的多元CDF不能保留这些属性,但多元CDF的新定义可以恢复这些属性,从而允许为多元设置制定“添加”和“残差”的概念。然后,这产生了基于添加树合奏的前阶段拟合的无监督算法,从而依次降低了kullback-leibler的差异。该算法允许对拟合密度进行分析评估,并输出可以轻松从中采样的生成模型。我们通过依赖比例的收缩和两阶段的策略来增强算法,该策略分别适合边缘和copula。然后,该算法在多个基准数据集的多元密度估计中竞争性地进行了最新的深度学习方法。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
本文研究了在潜在的结果框架中使用深神经网络(DNN)的平均治疗效果(ATE)的估计和推理。在一些规则性条件下,观察到的响应可以作为与混杂变量和治疗指标作为自变量的平均回归问题的响应。使用这种配方,我们研究了通过使用特定网络架构的DNN回归基于估计平均回归函数的两种尝试估计和推断方法。我们表明ATE的两个DNN估计在底层真正的均值回归模型上的一些假设下与无维一致性率一致。我们的模型假设可容纳观察到的协变量的潜在复杂的依赖结构,包括治疗指标和混淆变量之间的潜在因子和非线性相互作用。我们还基于采样分裂的思想,确保精确推理和不确定量化,建立了我们估计的渐近常态。仿真研究和实际数据应用证明了我们的理论调查结果,支持我们的DNN估计和推理方法。
translated by 谷歌翻译
我们提出了一种估计具有标称分类数据的高维线性模型的方法。我们的估算器,称为范围,通过使其相应的系数完全相等来融合水平。这是通过对分类变量的系数的阶数统计之间的差异之间的差异来实现这一点,从而聚类系数。我们提供了一种算法,用于精确和有效地计算在具有潜在许多级别的单个变量的情况下的总体上的最小值的全局最小值,并且在多变量情况下在块坐标血管下降过程中使用它。我们表明,利用未知级别融合的Oracle最小二乘解决方案是具有高概率的坐标血缘的极限点,只要真正的级别具有一定的最小分离;已知这些条件在单变量案例中最小。我们展示了在一系列实际和模拟数据集中的范围的有利性能。 R包的R包Catreg实现线性模型的范围,也可以在CRAN上提供逻辑回归的版本。
translated by 谷歌翻译