标签排名(LR)对应于学习一个假设的问题,以通过有限一组标签将功能映射到排名。我们采用了对LR的非参数回归方法,并获得了这一基本实际问题的理论绩效保障。我们在无噪声和嘈杂的非参数回归设置中介绍了一个用于标签排名的生成模型,并为两种情况下提供学习算法的示例复杂性界限。在无噪声环境中,我们研究了全排序的LR问题,并在高维制度中使用决策树和随机林提供计算有效的算法。在嘈杂的环境中,我们考虑使用统计观点的不完整和部分排名的LR更通用的情况,并使用多种多组分类的一种方法获得样本复杂性范围。最后,我们与实验补充了我们的理论贡献,旨在了解输入回归噪声如何影响观察到的输出。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
可实现和不可知性的可读性的等价性是学习理论的基本现象。与PAC学习和回归等古典设置范围的变种,近期趋势,如对冲强劲和私人学习,我们仍然缺乏统一理论;等同性的传统证据往往是不同的,并且依赖于强大的模型特异性假设,如统一的收敛和样本压缩。在这项工作中,我们给出了第一个独立的框架,解释了可实现和不可知性的可读性的等价性:三行黑箱减少简化,统一,并在各种各样的环境中扩展了我们的理解。这包括没有已知的学报的模型,例如学习任意分布假设或一般损失,以及许多其他流行的设置,例如强大的学习,部分学习,公平学习和统计查询模型。更一般地,我们认为可实现和不可知的学习的等价性实际上是我们调用属性概括的更广泛现象的特殊情况:可以满足有限的学习算法(例如\噪声公差,隐私,稳定性)的任何理想性质假设类(可能在某些变化中)延伸到任何学习的假设类。
translated by 谷歌翻译
训练数据的量是决定学习算法的概括能力的关键因素之一。直观地,人们期望随着训练数据的增加,错误率将降低。也许令人惊讶的是,自然尝试正式化这种直觉引起了有趣且具有挑战性的数学问题。例如,在他们关于模式识别的古典书籍中,Devroye,Gyorfi和Lugosi(1996)询问是否存在{单调}贝叶斯一致的算法。这个问题一直开放25年以上,直到最近Pestov(2021)使用单调贝叶斯一致算法的复杂构造解决了该问题进行二进制分类。我们得出了多类分类的一般结果,表明每个学习算法A都可以转换为具有相似性能的单调。此外,转换是有效的,仅使用黑盒甲骨文访问A。 Loog(2019),Viering and Loog(2021)和Mhammedi(2021)。我们的转换很容易意味着在各种情况下单调学习者:例如,它将Pestov的结果扩展到具有任意数量的标签的分类任务。这与针对二进制分类量身定制的Pestov的工作形成鲜明对比。另外,我们在单调算法的误差上提供统一的边界。这使我们的转换适用于无分销设置。例如,在PAC学习中,这意味着每个可学习的课程都接受单调PAC学习者。这通过Viering,Mey和Loog(2019)解决了问题; Viering and Loog(2021); Mhammedi(2021)。
translated by 谷歌翻译
给定真实的假设类$ \ mathcal {h} $,我们在什么条件下调查有一个差异的私有算法,它从$ \ mathcal {h} $给出的最佳假设.I.i.d.数据。灵感来自最近的成果的二进制分类的相关环境(Alon等,2019; Bun等,2020),其中显示了二进制类的在线学习是必要的,并且足以追随其私人学习,Jung等人。 (2020)显示,在回归的设置中,$ \ mathcal {h} $的在线学习是私人可读性所必需的。这里的在线学习$ \ mathcal {h} $的特点是其$ \ eta $-sequentient胖胖子的优势,$ {\ rm sfat} _ \ eta(\ mathcal {h})$,适用于所有$ \ eta> 0 $。就足够的私人学习条件而言,Jung等人。 (2020)显示$ \ mathcal {h} $私下学习,如果$ \ lim _ {\ eta \ downarrow 0} {\ rm sfat} _ \ eta(\ mathcal {h})$是有限的,这是一个相当限制的健康)状况。我们展示了在轻松的条件下,\ LIM \ INF _ {\ eta \ downarrow 0} \ eta \ cdot {\ rm sfat} _ \ eta(\ mathcal {h})= 0 $,$ \ mathcal {h} $私人学习,为\ \ rm sfat} _ \ eta(\ mathcal {h})$ \ eta \ dockarrow 0 $ divering建立第一个非参数私人学习保证。我们的技术涉及一种新颖的过滤过程,以输出非参数函数类的稳定假设。
translated by 谷歌翻译
我们研究了测试有序域上的离散概率分布是否是指定数量的垃圾箱的直方图。$ k $的简洁近似值的最常见工具之一是$ k $ [n] $,是概率分布,在一组$ k $间隔上是分段常数的。直方图测试问题如下:从$ [n] $上的未知分布中给定样品$ \ mathbf {p} $,我们想区分$ \ mathbf {p} $的情况从任何$ k $ - 组织图中,总变化距离的$ \ varepsilon $ -far。我们的主要结果是针对此测试问题的样本接近最佳和计算有效的算法,以及几乎匹配的(在对数因素内)样品复杂性下限。具体而言,我们表明直方图测试问题具有样品复杂性$ \ widetilde \ theta(\ sqrt {nk} / \ varepsilon + k / \ varepsilon^2 + \ sqrt {n} / \ varepsilon^2)$。
translated by 谷歌翻译
公司跨行业对机器学习(ML)的快速传播采用了重大的监管挑战。一个这样的挑战就是可伸缩性:监管机构如何有效地审核这些ML模型,以确保它们是公平的?在本文中,我们启动基于查询的审计算法的研究,这些算法可以以查询有效的方式估算ML模型的人口统计学率。我们提出了一种最佳的确定性算法,以及具有可比保证的实用随机,甲骨文效率的算法。此外,我们进一步了解了随机活动公平估计算法的最佳查询复杂性。我们对主动公平估计的首次探索旨在将AI治理置于更坚定的理论基础上。
translated by 谷歌翻译
作为算法公平性的概念,多核算已被证明是一个强大而多才多艺的概念,其含义远远超出了其最初的意图。这个严格的概念 - 预测在丰富的相交子群中得到了很好的校准 - 以成本为代价提供了强大的保证:学习成型预测指标的计算和样本复杂性很高,并且随着类标签的数量而成倍增长。相比之下,可以更有效地实现多辅助性的放松概念,但是,仅假设单独使用多学历,就无法保证许多最可取的多核能概念。这种紧张局势提出了一个关键问题:我们能否以多核式式保证来学习预测因素,以与多审核级相称?在这项工作中,我们定义并启动了低度多核的研究。低度的多核净化定义了越来越强大的多组公平性概念的层次结构,这些概念跨越了多辅助性和极端的多核电的原始表述。我们的主要技术贡献表明,与公平性和准确性有关的多核算的关键特性实际上表现为低级性质。重要的是,我们表明,低度的数学振动可以比完整的多核电更有效。在多级设置中,实现低度多核的样品复杂性在完整的多核电上呈指数级(在类中)提高。我们的工作提供了令人信服的证据,表明低度多核能代表了一个最佳位置,将计算和样品效率配对,并提供了强大的公平性和准确性保证。
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
Boosting是一种著名的机器学习方法,它基于将弱和适度不准确假设与强烈而准确的假设相结合的想法。我们研究了弱假设属于界限能力类别的假设。这个假设的灵感来自共同的惯例,即虚弱的假设是“易于学习的类别”中的“人数规则”。 (Schapire和Freund〜 '12,Shalev-Shwartz和Ben-David '14。)正式,我们假设弱假设类别具有有界的VC维度。我们关注两个主要问题:(i)甲骨文的复杂性:产生准确的假设需要多少个弱假设?我们设计了一种新颖的增强算法,并证明它绕过了由Freund和Schapire('95,'12)的经典下限。虽然下限显示$ \ omega({1}/{\ gamma^2})$弱假设有时是必要的,而有时则需要使用$ \ gamma $ -margin,但我们的新方法仅需要$ \ tilde {o}({1})({1}) /{\ gamma})$弱假设,前提是它们属于一类有界的VC维度。与以前的增强算法以多数票汇总了弱假设的算法不同,新的增强算法使用了更复杂(“更深”)的聚合规则。我们通过表明复杂的聚合规则实际上是规避上述下限是必要的,从而补充了这一结果。 (ii)表现力:通过提高有限的VC类的弱假设可以学习哪些任务?可以学到“遥远”的复杂概念吗?为了回答第一个问题,我们{介绍组合几何参数,这些参数捕获增强的表现力。}作为推论,我们为认真的班级的第二个问题提供了肯定的答案,包括半空间和决策树桩。一路上,我们建立并利用差异理论的联系。
translated by 谷歌翻译
混合模型被广泛用于拟合复杂和多模式数据集。在本文中,我们研究了具有高维稀疏潜在参数矢量的混合物,并考虑了支持这些向量的恢复的问题。尽管对混合模型中的参数学习进行了充分研究,但稀疏性约束仍然相对尚未探索。参数向量的稀疏性是各种设置的自然约束,支持恢复是参数估计的主要步骤。我们为支持恢复提供有效的算法,该算法具有对数样品的复杂性依赖于潜在空间的维度。我们的算法非常笼统,即它们适用于1)许多不同规范分布的混合物,包括统一,泊松,拉普拉斯,高斯人等。2)在统一参数的不同假设下,线性回归和线性分类器与高斯协变量的混合物与高斯协变量的混合物。在大多数这些设置中,我们的结果是对问题的首先保证,而在其余部分中,我们的结果为现有作品提供了改进。
translated by 谷歌翻译
Robust mean estimation is one of the most important problems in statistics: given a set of samples in $\mathbb{R}^d$ where an $\alpha$ fraction are drawn from some distribution $D$ and the rest are adversarially corrupted, we aim to estimate the mean of $D$. A surge of recent research interest has been focusing on the list-decodable setting where $\alpha \in (0, \frac12]$, and the goal is to output a finite number of estimates among which at least one approximates the target mean. In this paper, we consider that the underlying distribution $D$ is Gaussian with $k$-sparse mean. Our main contribution is the first polynomial-time algorithm that enjoys sample complexity $O\big(\mathrm{poly}(k, \log d)\big)$, i.e. poly-logarithmic in the dimension. One of our core algorithmic ingredients is using low-degree sparse polynomials to filter outliers, which may find more applications.
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
我们研究了清单可解放的平均估计问题,而对手可能会破坏大多数数据集。具体来说,我们在$ \ mathbb {r} ^ $和参数$ 0 <\ alpha <\ frac 1 2 $中给出了一个$ $ n $ points的$ t $ points。$ \ alpha $ -flaction的点$ t $是iid来自乖巧的分发$ \ Mathcal {D} $的样本,剩余的$(1- \ alpha)$ - 分数是任意的。目标是输出小型的vectors列表,其中至少一个接近$ \ mathcal {d} $的均值。我们开发新的算法,用于列出可解码的平均值估计,实现几乎最佳的统计保证,运行时间$ O(n ^ {1 + \ epsilon_0} d)$,适用于任何固定$ \ epsilon_0> 0 $。所有先前的此问题算法都有额外的多项式因素在$ \ frac 1 \ alpha $。我们与额外技术一起利用此结果,以获得用于聚类混合物的第一个近几个线性时间算法,用于分开的良好表现良好的分布,几乎匹配谱方法的统计保证。先前的聚类算法本身依赖于$ k $ -pca的应用程序,从而产生$ \ omega(n d k)$的运行时。这标志着近二十年来这个基本统计问题的第一次运行时间改进。我们的方法的起点是基于单次矩阵乘法权重激发电位减少的$ \ Alpha \至1 $制度中的新颖和更简单的近线性时间较强的估计算法。在Diakonikolas等人的迭代多滤波技术的背景下,我们迫切地利用了这种新的算法框架。 '18,'20,提供一种使用一维投影的同时群集和下群点的方法 - 因此,绕过先前算法所需的$ k $ -pca子程序。
translated by 谷歌翻译
We study the fundamental task of outlier-robust mean estimation for heavy-tailed distributions in the presence of sparsity. Specifically, given a small number of corrupted samples from a high-dimensional heavy-tailed distribution whose mean $\mu$ is guaranteed to be sparse, the goal is to efficiently compute a hypothesis that accurately approximates $\mu$ with high probability. Prior work had obtained efficient algorithms for robust sparse mean estimation of light-tailed distributions. In this work, we give the first sample-efficient and polynomial-time robust sparse mean estimator for heavy-tailed distributions under mild moment assumptions. Our algorithm achieves the optimal asymptotic error using a number of samples scaling logarithmically with the ambient dimension. Importantly, the sample complexity of our method is optimal as a function of the failure probability $\tau$, having an additive $\log(1/\tau)$ dependence. Our algorithm leverages the stability-based approach from the algorithmic robust statistics literature, with crucial (and necessary) adaptations required in our setting. Our analysis may be of independent interest, involving the delicate design of a (non-spectral) decomposition for positive semi-definite matrices satisfying certain sparsity properties.
translated by 谷歌翻译
Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals.Our goal is a broad understanding of the resources required for private learning in terms of samples, computation time, and interaction. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. This result dispels the similarity between learning with noise and private learning (both must be robust to small changes in inputs), since parity is thought to be very hard to learn given random classification noise.Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Therefore, for local private learning algorithms, the similarity to learning with noise is stronger: local learning is equivalent to SQ learning, and SQ algorithms include most known noise-tolerant learning algorithms. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms. Because of the equivalence to SQ learning, this result also separates adaptive and nonadaptive SQ learning.
translated by 谷歌翻译
我们研究了Massart噪声的PAC学习半圆的问题。给定标记的样本$(x,y)$从$ \ mathbb {r} ^ {d} ^ {d} \ times \ times \ {\ pm 1 \} $,这样的例子是任意的和标签$ y $ y $ y $ x $是由按萨塔特对手损坏的目标半空间与翻转概率$ \ eta(x)\ leq \ eta \ leq 1/2 $,目标是用小小的假设计算假设错误分类错误。这个问题的最佳已知$ \ mathrm {poly}(d,1 / \ epsilon)$时间算法实现$ \ eta + \ epsilon $的错误,这可能远离$ \ mathrm {opt} +的最佳界限\ epsilon $,$ \ mathrm {opt} = \ mathbf {e} _ {x \ sim d_x} [\ eta(x)] $。虽然已知实现$ \ mathrm {opt} + O(1)$误差需要超级多项式时间在统计查询模型中,但是在已知的上限和下限之间存在大的间隙。在这项工作中,我们基本上表征了统计查询(SQ)模型中Massart HalfSpaces的有效可读性。具体来说,我们表明,在$ \ mathbb {r} ^ d $中没有高效的sq算法用于学习massart halfpaces ^ d $可以比$ \ omega(\ eta)$更好地实现错误,即使$ \ mathrm {opt} = 2 ^ { - - \ log ^ {c}(d)$,适用于任何通用常量$ c \ in(0,1)$。此外,当噪声上限$ \ eta $接近$ 1/2 $时,我们的错误下限变为$ \ eta - o _ {\ eta}(1)$,其中$ o _ {\ eta}(1)$当$ \ eta $接近$ 1/2 $时,术语达到0美元。我们的结果提供了强有力的证据表明,大规模半空间的已知学习算法几乎是最可能的,从而解决学习理论中的长期开放问题。
translated by 谷歌翻译
鉴于$ n $ i.i.d.从未知的分发$ P $绘制的样本,何时可以生成更大的$ n + m $ samples,这些标题不能与$ n + m $ i.i.d区别区别。从$ p $绘制的样品?(AXELROD等人2019)将该问题正式化为样本放大问题,并为离散分布和高斯位置模型提供了最佳放大程序。然而,这些程序和相关的下限定制到特定分布类,对样本扩增的一般统计理解仍然很大程度上。在这项工作中,我们通过推出通常适用的放大程序,下限技术和与现有统计概念的联系来放置对公司统计基础的样本放大问题。我们的技术适用于一大类分布,包括指数家庭,并在样本放大和分配学习之间建立严格的联系。
translated by 谷歌翻译