本文提出了一种终身学习复发性神经网络的方法,例如NNARX,ESN,LSTM和GRU,在控制系统合成中被用作植物模型。该问题很重要,因为在许多实际应用中,需要在可用的新信息和/或系统进行更改时调整模型,而无需随时存储越来越多的数据。确实,在这种情况下,出现了许多问题,例如众所周知的灾难性遗忘和容量饱和。我们提出了一种受移动范围估计器启发的适应算法,从而得出了其收敛条件。所描述的方法应用于现有文献中已经具有挑战性的基准的模拟化学厂。讨论了获得的主要结果。
translated by 谷歌翻译
本文旨在讨论和分析控制设计应用中经常性神经网络(RNN)的潜力。考虑RNN的主要系列,即神经非线性自回归外源,(NNARX),回波状态网络(ESN),长短短期存储器(LSTM)和门控复发单元(GRU)。目标是双重。首先,为了调查近期RNN培训的结果,可以享受输入到状态稳定性(ISS)和增量输入到状态稳定性({\ delta} ISS)保证。其次,讨论仍然阻碍RNN进行控制的问题,即它们的鲁棒性,核算和解释性。前者属性与网络的所谓概括能力有关,即即使在视野或扰动的输入轨迹存在下,它们与底层真实植物的一致性。后者与在RNN模型和植物之间提供明确的正式连接的可能性有关。在这种情况下,我们说明了Iss和{\ delta} ISS如何朝着RNN模型的稳健性和可验证代表重大步骤,而可解释性的要求铺平了基于物理的网络的使用方式。还简要讨论了植物模型的模型预测控制器的设计。最后,在模拟化学体系上说明了本文的一些主要话题。
translated by 谷歌翻译
本文介绍了非线性MPC控制器的设计,该设计为通过神经非线性自动回归外源性(NNARX)网络描述的模型提供无抵销的设定值跟踪。 NNARX模型是从工厂收集的输入输出数据中标识的,并且可以通过过去的输入和输出变量为已知的可测量状态给出状态空间表示,因此不需要状态观察者。在训练阶段,与工厂行为一致时,可以强制强制强制输入到国家稳定性({\ delta} ISS)属性。然后,利用{\ delta} ISS属性在输出跟踪误差上采取明确的积分操作来增强模型,从而可以实现为设计的控制方案实现无抵销的跟踪功能。在水加热系统上进行了数值测试,并将所达到的结果与另一种流行的无偏移MPC方法评分的结果进行了数值测试,这表明即使在植物上作用着骚动,提出的方案也达到了显着的性能。
translated by 谷歌翻译
我们调查使用扩展卡尔曼滤波来训练用于数据驱动非线性,可能自适应的基于模型的控制设计的经常性神经网络。我们表明该方法可以应用于网络参数的相当任意的凸损函数和正则化术语。我们表明,学习方法在非线性系统识别基准测试中占据了在非线性系统识别基准中的随机梯度下降,以及培训具有二进制输出的线性系统。我们还探讨了数据驱动非线性模型预测控制算法及其与无偏移跟踪的干扰模型的关系。
translated by 谷歌翻译
我们试图将广泛的神经网络的非线性建模功能与模型预测控制(MPC)的安全保证相结合,并在严格的在线计算框架中。可以使用Koopman运算符捕获所考虑的网络类,并将其集成到基于Koopman的跟踪MPC(KTMPC)中,以用于非线性系统以跟踪分段常数引用。原始非线性动力学与其训练有素的Koopman线性模型之间模型不匹配的影响是通过在建议的跟踪MPC策略中使用约束拧紧方法来处理的。通过选择两个Lyapunov候选功能,我们证明解决方案是可行的,并且在存在有限的建模错误的情况下,在线和离线最佳可触发稳定输出均具有稳定的输入到状态。最后,我们展示了一个数值示例的结果以及自动地面车辆在跟踪给定参考文献中的应用。
translated by 谷歌翻译
在过去的十年中,由于分散控制应用程序的趋势和网络物理系统应用的出现,网络控制系统在过去十年中引起了广泛的关注。但是,由于无线网络的复杂性质,现实世界中无线网络控制系统的通信带宽,可靠性问题以及对网络动态的认识不足。将机器学习和事件触发的控制结合起来有可能减轻其中一些问题。例如,可以使用机器学习来克服缺乏网络模型的问题,通过学习系统行为或通过不断学习模型动态来适应动态变化的模型。事件触发的控制可以通过仅在必要时或可用资源时传输控制信息来帮助保护通信带宽。本文的目的是对有关机器学习的使用与事件触发的控制的使用进行综述。机器学习技术,例如统计学习,神经网络和基于强化的学习方法,例如深入强化学习,并结合事件触发的控制。我们讨论如何根据机器学习使用的目的将这些学习算法用于不同的应用程序。在对文献的审查和讨论之后,我们重点介绍了与基于机器学习的事件触发的控制并提出潜在解决方案相关的开放研究问题和挑战。
translated by 谷歌翻译
在化学厂的运行过程中,必须始终保持产品质量,并应最大程度地降低规范产品的生产。因此,必须测量与产品质量相关的过程变量,例如工厂各个部分的材料的温度和组成,并且必须根据测量结果进行适当的操作(即控制)。一些过程变量(例如温度和流速)可以连续,即时测量。但是,其他变量(例如成分和粘度)只能通过从植物中抽样物质后进行耗时的分析来获得。已经提出了软传感器,用于估算从易于测量变量实时获得的过程变量。但是,在未记录的情况下(推断),传统统计软传感器的估计精度(由记录的测量值构成)可能非常差。在这项研究中,我们通过使用动态模拟器来估算植物的内部状态变量,该模拟器可以根据化学工程知识和人工智能(AI)技术估算和预测未记录的情况,称为增强学习,并建议使用使用估计植物的内部状态变量作为软传感器。此外,我们描述了使用此类软传感器的植物操作和控制的前景以及为拟议系统获得必要的预测模型(即模拟器)的方法。
translated by 谷歌翻译
在机电一体化的IEEE / ASME交易上发布,DOI:10.1109 / TMECH.2021.3100150。理想情况下,需要精确的传感器测量来实现机电系统的闭环控制中的良好性能。因此,传感器故障将阻止系统正常工作,除非采用容错控制(FTC)架构。作为非线性系统的基于模型的FTC算法通常是具有挑战性的设计,本文基于深度学习的传感器故障存在于FTC的新方法。所考虑的方法用单个反复性神经网络替换故障检测和隔离和控制器设计的阶段,其在给定的时间窗口中具有过去的传感器测量值作为输入,以及控制变量的当前值作为输出。该端到端的深FTC方法应用于由球形倒立摆的机电调整系统,其构造通过反应轮改变,又通过电动机致动。模拟和实验结果表明,该方法可以处理连杆位置/速度传感器中发生的突然故障。提供的补充材料包括现实世界实验和软件源代码的视频。
translated by 谷歌翻译
响应于不同规格的产品的不断变化的原料供应和市场需求,需要在时变的操作条件和目标(例如,设定值)的过程中运行,以改善过程经济,与预定的传统过程操作相比均衡。本文开发了一种用于非线性化学过程的基于收缩理论的控制方法,以实现时变参考跟踪。这种方法利用神经网络的通用近似特征,采用离散时间收缩分析和控制。它涉及训练神经网络以学习嵌入基于收缩的控制器中的收缩度量和差分反馈增益。第二个,单独的神经网络也结合到控制循环中,以在线学习不确定系统模型参数。得到的控制方案能够实现有效的偏移跟踪时变的参考,其具有全范围的模型不确定性,而无需控制器结构作为参考变化重新设计。这是一种强大的方法,可以在工艺模型中处理流程模型中的有界参数不确定性,这些方法通常遇到工业(化学)过程中。这种方法还确保在线同时学习和控制期间的过程稳定性。提供模拟实施例以说明上述方法。
translated by 谷歌翻译
最近,基于障碍函数的安全强化学习(RL)与actor-批评结构用于连续控制任务的批评结构已经受到越来越受到关注。使用安全性和收敛保证,学习近最优控制政策仍然挑战。此外,很少有效地解决了在时变的安全约束下的安全RL算法设计。本文提出了一种基于模型的安全RL算法,用于具有时变状态和控制约束的非线性系统的最佳控制。在拟议的方法中,我们构建了一种新的基于障碍的控制策略结构,可以保证控制安全性。提出了一种多步骤策略评估机制,以预测策略在时变的安全限制下的安全风险,并指导政策安全更新。证明了稳定性和稳健性的理论结果。此外,分析了演员 - 评论家学习算法的收敛。所提出的算法的性能优于模拟安全健身房环境中的几种最先进的RL算法。此外,该方法适用于两个现实世界智能车辆的综合路径和碰撞避免问题。差动驱动车辆和Ackermann-Drive分别用于验证离线部署性能和在线学习性能。我们的方法在实验中显示了令人印象深刻的SIM-to-Real的转移能力和令人满意的在线控制性能。
translated by 谷歌翻译
现有的数据驱动和反馈流量控制策略不考虑实时数据测量的异质性。此外,对于缺乏数据效率,传统的加固学习方法(RL)方法通常会缓慢收敛。此外,常规的最佳外围控制方案需要对系统动力学的精确了解,因此对内源性不确定性会很脆弱。为了应对这些挑战,这项工作提出了一种基于不可或缺的增强学习(IRL)的方法来学习宏观交通动态,以进行自适应最佳周边控制。这项工作为运输文献做出了以下主要贡献:(a)开发连续的时间控制,并具有离散增益更新以适应离散时间传感器数据。 (b)为了降低采样复杂性并更有效地使用可用数据,将体验重播(ER)技术引入IRL算法。 (c)所提出的方法以“无模型”方式放松模型校准的要求,该方式可以稳健地进行建模不确定性,并通过数据驱动的RL算法增强实时性能。 (d)通过Lyapunov理论证明了基于IRL的算法和受控交通动力学的稳定性的收敛性。最佳控制定律被参数化,然后通过神经网络(NN)近似,从而缓解计算复杂性。在不需要模型线性化的同时,考虑了状态和输入约束。提出了数值示例和仿真实验,以验证所提出方法的有效性和效率。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
The paper addresses the problem of time offset synchronization in the presence of temperature variations, which lead to a non-Gaussian environment. In this context, regular Kalman filtering reveals to be suboptimal. A functional optimization approach is developed in order to approximate optimal estimation of the clock offset between master and slave. A numerical approximation is provided to this aim, based on regular neural network training. Other heuristics are provided as well, based on spline regression. An extensive performance evaluation highlights the benefits of the proposed techniques, which can be easily generalized to several clock synchronization protocols and operating environments.
translated by 谷歌翻译
本文介绍了模型预测控制(MPC)的稳定分析工具,其中通过在有限的视野上优化成本函数来生成控制动作。 MPC的稳定性分析有限,但没有终端重量是一个众所周知的具有挑战性的问题。我们根据与阶段成本相关的辅助一步优化定义了一个新的值函数,即最佳的一步值函数(OSVF)。结果表明,如果OSVF为(局部)控制Lyapunov函数(CLF),则可以使有限的Horizo​​n MPC渐近稳定。更具体地说,通过利用OSFV的CLF属性来构建承包终端集,提出了一种新的稳定MPC算法(CMPC)。我们表明,在OSVF为CLF的情况下,CMPC是可行的,并保证稳定性。讨论了检查此条件和最大末端集的估计。提供了数值示例,以证明所提出的稳定性条件和相应的CMPC算法的有效性。
translated by 谷歌翻译
能源部门的深度脱碳将需要大量的随机可再生能源渗透和大量的网格资产协调。对于面对这种变化而负责维持电网稳定性和安全性的电力系统运营商来说,这是一个具有挑战性的范式。凭借从复杂数据集中学习并提供有关快速时间尺度的预测解决方案的能力,机器学习(ML)得到了很好的选择,可以帮助克服这些挑战,因为在未来几十年中,电力系统转变。在这项工作中,我们概述了与构建可信赖的ML模型相关的五个关键挑战(数据集生成,数据预处理,模型培训,模型评估和模型嵌入),这些模型从基于物理的仿真数据中学习。然后,我们演示如何将单个模块连接在一起,每个模块都克服了各自的挑战,在机器学习管道中的顺序阶段,如何有助于提高训练过程的整体性能。特别是,我们实施了通过反馈连接学习管道的不同元素的方法,从而在模型培训,绩效评估和重新训练之间“关闭循环”。我们通过学习与拟议的北海风能中心系统的详细模型相关的N-1小信号稳定性边缘来证明该框架,其组成模块的有效性及其反馈连接。
translated by 谷歌翻译
机器人布操作是自动机器人系统的相关挑战性问题。高度可变形的对象,因为纺织品在操纵过程中可以采用多种配置和形状。因此,机器人不仅应该了解当前的布料配置,还应能够预测布的未来行为。本文通过使用模型预测控制(MPC)策略在对象的其他部分应用动作,从而解决了间接控制纺织对象某些点的配置的问题,该策略还允许间接控制的行为点。设计的控制器找到了最佳控制信号,以实现所需的未来目标配置。本文中的探索场景考虑了通过抓住其上角,以平方布的下角跟踪参考轨迹。为此,我们提出并验证线性布模型,该模型允许实时解决与MPC相关的优化问题。增强学习(RL)技术用于学习所提出的布模型的最佳参数,并调整所得的MPC。在模拟中获得准确的跟踪结果后,在真实的机器人中实现并执行了完整的控制方案,即使在不利条件下也可以获得准确的跟踪。尽管总观察到的误差达到5 cm标记,但对于30x30 cm的布,分析表明,MPC对该值的贡献少于30%。
translated by 谷歌翻译
模型预测控制(MPC)越来越多地考虑控制快速系统和嵌入式应用。然而,MPC对这种系统具有一些重大挑战。其高计算复杂性导致来自控制算法的高功耗,这可能考虑电池供电嵌入式系统中的能量资源的大量份额。必须调整MPC参数,这主要是一个试验和错误过程,这些过程会影响控制器的控制性能,鲁棒性和计算复杂度高度。在本文中,我们提出了一种新颖的框架,其中可以使用加强学习(RL)共同调整控制算法的任何参数,其目的是同时优化控制算法的控制性能和功率使用。我们提出了优化MPCWith RL的元参数的新颖思想,即影响MPCPROBLAB的结构的参数,而不是给定个问题的解决方案。我们的控制算法基于事件触发的MPC,在那里我们学习当应该重新计算MPC时,以及在MPC计算之间应用的双模MPC和线性状态反馈控制法。我们制定了一种新的混合分配政策,并表明,随着联合优化,我们在孤立地优化相同参数时,无法呈现自己的改进。我们展示了我们对倒立摆控制任务的框架,将控制系统的总计算时间减少了36%,同时还通过最佳性能的MPC基线提高了18.4%的控制性能。
translated by 谷歌翻译
在这项工作中,我们考虑了在线环境中提高模型预测控制(MPC)动态模型准确性的任务。即使可以学习预测模型并将其应用于基于模型的控制器,但这些模型也经常离线学习。在此离线环境中,首先收集培训数据,并通过详细的培训程序来学习预测模型。将模型训练至所需的精度后,然后将其部署到模型预测控制器中。但是,由于模型是离线学习的,因此它不适合部署过程中观察到的干扰或模型错误。为了提高模型和控制器的适应性,我们提出了一个在线动力学学习框架,该框架不断提高部署过程中动态模型的准确性。我们采用基于知识的神经普通微分方程(KNODE)作为动态模型,并使用受转移学习启发的技术来不断提高模型的准确性。我们通过四型机器人证明了框架的功效,并在模拟和物理实验中验证框架。结果表明,所提出的方法能够说明可能段时间变化的干扰,同时保持良好的轨迹跟踪性能。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
随着机器人在现实世界中冒险,他们受到无意义的动态和干扰。在相对静态和已知的操作环境中已成功地证明了基于传统的基于模型的控制方法。但是,当机器人的准确模型不可用时,基于模型的设计可能导致次优甚至不安全的行为。在这项工作中,我们提出了一种桥接模型 - 现实差距的方法,并且即使存在动态不确定性,也能够应用基于模型的方法。特别地,我们介绍基于学习的模型参考适应方法,其使机器人系统具有可能不确定的动态,表现为预定义的参考模型。反过来,参考模型可用于基于模型的控制器设计。与典型的模型参考调整控制方法相比,我们利用神经网络的代表性力量来捕获高度非线性动力学的不确定性,并通过在称为Lipschitz网络的特殊类型神经网络的建筑设计中编码认证嘴唇条件来捕获高度非线性动力学的不确定性和保证稳定性。即使我们的关于真正的机器人系统的先验知识有限,我们的方法也适用于一般的非线性控制仿射系统。我们展示了我们在飞行倒置摆的方法中的方法,其中一个搁板的四轮电机被挑战,以平衡倒挂摆在悬停或跟踪圆形轨迹时。
translated by 谷歌翻译