响应于不同规格的产品的不断变化的原料供应和市场需求,需要在时变的操作条件和目标(例如,设定值)的过程中运行,以改善过程经济,与预定的传统过程操作相比均衡。本文开发了一种用于非线性化学过程的基于收缩理论的控制方法,以实现时变参考跟踪。这种方法利用神经网络的通用近似特征,采用离散时间收缩分析和控制。它涉及训练神经网络以学习嵌入基于收缩的控制器中的收缩度量和差分反馈增益。第二个,单独的神经网络也结合到控制循环中,以在线学习不确定系统模型参数。得到的控制方案能够实现有效的偏移跟踪时变的参考,其具有全范围的模型不确定性,而无需控制器结构作为参考变化重新设计。这是一种强大的方法,可以在工艺模型中处理流程模型中的有界参数不确定性,这些方法通常遇到工业(化学)过程中。这种方法还确保在线同时学习和控制期间的过程稳定性。提供模拟实施例以说明上述方法。
translated by 谷歌翻译
收缩理论是一种分析工具,用于研究以均匀的正面矩阵定义的收缩度量下的非自主(即,时变)非线性系统的差动动力学,其存在导致增量指数的必要和充分表征多种溶液轨迹彼此相互稳定性的稳定性。通过使用平方差分长度作为Lyapunov样功能,其非线性稳定性分析向下沸腾以找到满足以表达为线性矩阵不等式的稳定条件的合适的收缩度量,表明可以在众所周知的线性系统之间绘制许多平行线非线性系统理论与收缩理论。此外,收缩理论利用了与比较引理结合使用的指数稳定性的优越稳健性。这产生了基于神经网络的控制和估计方案的急需安全性和稳定性保证,而不借助使用均匀渐近稳定性的更涉及的输入到状态稳定性方法。这种独特的特征允许通过凸优化来系统构造收缩度量,从而获得了由于扰动和学习误差而在外部扰动的时变的目标轨迹和解决方案轨迹之间的距离上的明确指数界限。因此,本文的目的是介绍了收缩理论的课程概述及其在确定性和随机系统的非线性稳定性分析中的优点,重点导出了各种基于学习和数据驱动的自动控制方法的正式鲁棒性和稳定性保证。特别是,我们提供了使用深神经网络寻找收缩指标和相关控制和估计法的技术的详细审查。
translated by 谷歌翻译
本文提出了一种基于匹配不确定性的非线性系统的收缩指标和干扰估计的轨迹中心学习控制方法。该方法允许使用广泛的模型学习工具,包括深神经网络,以学习不确定的动态,同时仍然在整个学习阶段提供瞬态跟踪性能的保证,包括没有学习的特殊情况。在所提出的方法中,提出了一种扰动估计法,以估计不确定性的点值,具有预计估计误差限制(EEB)。学习的动态,估计的紊乱和EEB在强大的黎曼能量条件下并入,以计算控制法,即使学习模型较差,也能保证在整个学习阶段的所需轨迹对所需轨迹的指数趋同。另一方面,具有改进的精度,学习的模型可以在高级计划器中结合,以规划更好的性能,例如降低能耗和更短的旅行时间。建议的框架在平面Quadrotor导航示例上验证。
translated by 谷歌翻译
强化学习通常与奖励最大化(或成本量化)代理的培训相关,换句话说是控制者。它可以使用先验或在线收集的系统数据以无模型或基于模型的方式应用,以培训涉及的参数体系结构。通常,除非通过学习限制或量身定制的培训规则采取特殊措施,否则在线增强学习不能保证闭环稳定性。特别有希望的是通过“经典”控制方法进行增强学习的混合体。在这项工作中,我们建议一种在纯粹的在线学习环境中,即没有离线培训的情况下,可以保证系统控制器闭环的实际稳定性。此外,我们仅假设对系统模型的部分知识。为了达到要求的结果,我们采用经典自适应控制技术。总体控制方案的实施是在数字,采样设置中明确提供的。也就是说,控制器接收系统的状态,并在离散的时间(尤其是等距的时刻)中计算控制动作。该方法在自适应牵引力控制和巡航控制中进行了测试,事实证明,该方法可显着降低成本。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
这项工作开发了一种新的直接自适应控制框架,将确定性等效原理扩展到具有无与伦比的模型不确定性的一般非线性系统。该方法在线调整适应速率,以消除参数估计瞬变对闭环稳定性的影响。如果已知相应的模型参数化Lyapunov函数或收缩度量,则该方法可以立即结合先前设计或学习的反馈策略。具有无与伦比的不确定性的各种非线性系统的仿真结果证明了这种方法。
translated by 谷歌翻译
星际对象(ISO),与太阳相结合的无重力的天文对象,可能是原始材料的代表,在理解系外星系中无价。然而,由于其倾斜度通常很高和相对速度的限制性较差,因此,使用常规的人类在循环方法中探索ISO非常具有挑战性。本文介绍了神经汇聚 - 一个基于深度学习的指导和控制框架,用于遇到任何快速移动的对象,包括ISO,稳健,准确和实时自主。它在指导策略之上使用最小规范跟踪控制,该指南策略由频谱归一化的深神经网络建模,在该策略策略中,其超级参数通过新引入的损耗函数调节,直接惩罚了状态轨迹跟踪错误。我们严格地表明,即使在ISO探索的挑战性案例中,神经汇聚也提供了1)在预期的航天器递送误差上的高概率指数构成; 2)关于模型预测控制的解决方案的有限最优差距,这两者都是必不可少的,尤其是对于如此关键的空间任务。在数值模拟中,证明神经汇聚可以达到99%具有现实状态不确定性的ISO候选者的终末交付误差小于0.2 km,同时保留足以实现实时实施的计算效率。
translated by 谷歌翻译
本文开发了一种基于模型的强化学习(MBR)框架,用于在线在线学习无限范围最佳控制问题的价值函数,同时遵循表示为控制屏障功能(CBFS)的安全约束。我们的方法是通过开发一种新型的CBFS,称为Lyapunov样CBF(LCBF),其保留CBFS的有益特性,以开发最微创的安全控制政策,同时也具有阳性半自动等所需的Lyapunov样品质 - 义法。我们展示这些LCBFS如何用于增强基于学习的控制策略,以保证安全性,然后利用这种方法在MBRL设置中开发安全探索框架。我们表明,我们的开发方法可以通过各种数值示例来处理比较法的更通用的安全限制。
translated by 谷歌翻译
非线性自适应控制理论中的一个关键假设是系统的不确定性可以在一组已知基本函数的线性跨度中表示。虽然该假设导致有效的算法,但它将应用限制为非常特定的系统类别。我们介绍一种新的非参数自适应算法,其在参数上学习无限尺寸密度,以取消再现内核希尔伯特空间中的未知干扰。令人惊讶的是,所产生的控制输入承认,尽管其底层无限尺寸结构,但是尽管它的潜在无限尺寸结构实现了其实施的分析表达。虽然这种自适应输入具有丰富和富有敏感性的 - 例如,传统的线性参数化 - 其计算复杂性随时间线性增长,使其比其参数对应力相对较高。利用随机傅里叶特征的理论,我们提供了一种有效的随机实现,该实现恢复了经典参数方法的复杂性,同时可透明地保留非参数输入的表征性。特别地,我们的显式范围仅取决于系统的基础参数,允许我们所提出的算法有效地缩放到高维系统。作为该方法的说明,我们展示了随机近似算法学习由牛顿重力交互的十点批量组成的60维系统的预测模型的能力。
translated by 谷歌翻译
本文提出了一种数据驱动方法,用于使用收缩理论从离线数据学习收敛控制策略。收缩理论使得构建一种使闭环系统轨迹固有地朝向独特的轨迹的策略构成策略。在技​​术水平,识别收缩度量,该收缩度量是关于机器人的轨迹表现出收缩的距离度量通常是非琐碎的。我们建议共同了解控制政策及其相应的收缩度量,同时执行收缩。为此,我们从由机器人的状态和输入轨迹组成的离线数据集中学习机器人系统的隐式动态模型。使用此学习的动态模型,我们提出了一种用于学习收缩策略的数据增强算法。我们随机生成状态空间中的样本,并通过学习的动态模型在时间上向前传播,以生成辅助样本轨迹。然后,我们学习控制策略和收缩度量,使得来自离线数据集的轨迹之间的距离和我们生成的辅助样品轨迹随时间的减小。我们评估我们提出的模拟机器人目标达成任务的拟议框架的表现,并证明了执行收缩的速度较快,较快的收敛性和更大的学习政策的鲁棒性。
translated by 谷歌翻译
我们呈现$ \ mathcal {cl} _1 $ - $ \ mathcal {gp} $,控制框架,使能安全同时学习和控制能够进行不确定因素的系统。这两个主要成分是基于收缩理论的$ \ mathcal {l} _1 $($ \ mathcal {cl} _1 $)控制和贝叶斯学习以高斯过程(GP)回归。$ \ mathcal {cl} _1 $控制器可确保在提供安全证书时满足控制目标。此外,$ \ mathcal {cl} _1 $ - $ \ mathcal {gp} $将任何可用数据纳入了GP的不确定因素模型,这提高了性能并使运动计划能够安全地实现最佳状态。这样,即使在学习瞬变期间,也可以保证系统的安全操作。我们提供了一些用于在各种环境中安全学习和控制平面的平面电路系统的说明性示例。
translated by 谷歌翻译
稳定性认证并确定安全稳定的初始集是确保动态系统的操作安全性,稳定性和鲁棒性的两个重要问题。随着机器学习工具的出现,需要针对反馈循环中具有机器学习组件的系统来解决这些问题。为了开发一种关于神经网络(NN)控制的非线性系统的稳定性和稳定性的一般理论,提出了基于Lyapunov的稳定性证书,并进一步用于设计用于NN Controller和NN控制器和最大LIPSCHITZ绑定的。也是给定的安全操作域内内部相应的最大诱因(ROA)。为了计算这种强大的稳定NN控制器,它也最大化了系统的长期实用程序,提出了稳定性保证训练(SGT)算法。提出的框架的有效性通过说明性示例得到了验证。
translated by 谷歌翻译
我们为一类不确定的控制型非线性系统提供了一种运动计划算法,该系统可以在使用高维传感器测量值(例如RGB-D图像)和反馈控制循环中的学习感知模块时确保运行时安全性和目标达到性能。首先,给定状态和观察数据集,我们训练一个感知系统,该系统试图从观察结果中倒入状态的一部分,并估计感知错误上的上限,该误差有效,在数据附近有可信赖的域中具有很高的概率。接下来,我们使用收缩理论来设计稳定的状态反馈控制器和收敛的动态观察者,该观察者使用学习的感知系统来更新其状态估计。当该控制器在动力学和不正确状态估计中遇到错误时,我们会在轨迹跟踪误差上得出一个绑定。最后,我们将此绑定到基于采样的运动计划器中,引导它返回可以使用传感器数据在运行时安全跟踪的轨迹。我们展示了我们在4D汽车上模拟的方法,6D平面四极管以及使用RGB(-D)传感器测量的17D操纵任务,这表明我们的方法安全可靠地将系统转向了目标,而无法考虑的基线,这些基线无法考虑。受信任的域或状态估计错误可能不安全。
translated by 谷歌翻译
本文介绍了非线性MPC控制器的设计,该设计为通过神经非线性自动回归外源性(NNARX)网络描述的模型提供无抵销的设定值跟踪。 NNARX模型是从工厂收集的输入输出数据中标识的,并且可以通过过去的输入和输出变量为已知的可测量状态给出状态空间表示,因此不需要状态观察者。在训练阶段,与工厂行为一致时,可以强制强制强制输入到国家稳定性({\ delta} ISS)属性。然后,利用{\ delta} ISS属性在输出跟踪误差上采取明确的积分操作来增强模型,从而可以实现为设计的控制方案实现无抵销的跟踪功能。在水加热系统上进行了数值测试,并将所达到的结果与另一种流行的无偏移MPC方法评分的结果进行了数值测试,这表明即使在植物上作用着骚动,提出的方案也达到了显着的性能。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
影响模型预测控制(MPC)策略的神经网络(NN)近似的常见问题是缺乏分析工具来评估基于NN的控制器的动作下闭环系统的稳定性。我们介绍了一种通用过程来量化这种控制器的性能,或者设计具有整流的线性单元(Relus)的最小复杂性NN,其保留给定MPC方案的理想性质。通过量化基于NN和基于MPC的状态到输入映射之间的近似误差,我们首先建立适当的条件,涉及两个关键量,最坏情况误差和嘴唇截止恒定,保证闭环系统的稳定性。然后,我们开发了一个离线,混合整数的基于优化的方法,以确切地计算这些数量。这些技术共同提供足以认证MPC控制法的基于Relu的近似的稳定性和性能的条件。
translated by 谷歌翻译
We present a method for providing statistical guarantees on runtime safety and goal reachability for integrated planning and control of a class of systems with unknown nonlinear stochastic underactuated dynamics. Specifically, given a dynamics dataset, our method jointly learns a mean dynamics model, a spatially-varying disturbance bound that captures the effect of noise and model mismatch, and a feedback controller based on contraction theory that stabilizes the learned dynamics. We propose a sampling-based planner that uses the mean dynamics model and simultaneously bounds the closed-loop tracking error via a learned disturbance bound. We employ techniques from Extreme Value Theory (EVT) to estimate, to a specified level of confidence, several constants which characterize the learned components and govern the size of the tracking error bound. This ensures plans are guaranteed to be safely tracked at runtime. We validate that our guarantees translate to empirical safety in simulation on a 10D quadrotor, and in the real world on a physical CrazyFlie quadrotor and Clearpath Jackal robot, whereas baselines that ignore the model error and stochasticity are unsafe.
translated by 谷歌翻译
随着机器人在现实世界中冒险,他们受到无意义的动态和干扰。在相对静态和已知的操作环境中已成功地证明了基于传统的基于模型的控制方法。但是,当机器人的准确模型不可用时,基于模型的设计可能导致次优甚至不安全的行为。在这项工作中,我们提出了一种桥接模型 - 现实差距的方法,并且即使存在动态不确定性,也能够应用基于模型的方法。特别地,我们介绍基于学习的模型参考适应方法,其使机器人系统具有可能不确定的动态,表现为预定义的参考模型。反过来,参考模型可用于基于模型的控制器设计。与典型的模型参考调整控制方法相比,我们利用神经网络的代表性力量来捕获高度非线性动力学的不确定性,并通过在称为Lipschitz网络的特殊类型神经网络的建筑设计中编码认证嘴唇条件来捕获高度非线性动力学的不确定性和保证稳定性。即使我们的关于真正的机器人系统的先验知识有限,我们的方法也适用于一般的非线性控制仿射系统。我们展示了我们在飞行倒置摆的方法中的方法,其中一个搁板的四轮电机被挑战,以平衡倒挂摆在悬停或跟踪圆形轨迹时。
translated by 谷歌翻译
行动调速器是标称控制循环的附加方案,该方案监视和调整控制措施以强制执行以端加状态和控制约束表示的安全规范。在本文中,我们介绍了系统的强大动作调速器(RAG),该动力学可以使用具有参数和加法不确定性的离散时间分段仿射(PWA)模型来表示,并受到非convex约束。我们开发了抹布的理论属性和计算方法。之后,我们介绍了抹布来实现安全加强学习(RL),即确保在线RL勘探和探索过程中的历史约束满意度。该开发使控制策略的安全实时演变和适应操作环境和系统参数的变化(由于老化,损坏等)。我们通过考虑将其应用于质量 - 弹簧式抑制系统的软地面问题来说明抹布在约束执法和安全RL中的有效性。
translated by 谷歌翻译
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
translated by 谷歌翻译