We present a method for providing statistical guarantees on runtime safety and goal reachability for integrated planning and control of a class of systems with unknown nonlinear stochastic underactuated dynamics. Specifically, given a dynamics dataset, our method jointly learns a mean dynamics model, a spatially-varying disturbance bound that captures the effect of noise and model mismatch, and a feedback controller based on contraction theory that stabilizes the learned dynamics. We propose a sampling-based planner that uses the mean dynamics model and simultaneously bounds the closed-loop tracking error via a learned disturbance bound. We employ techniques from Extreme Value Theory (EVT) to estimate, to a specified level of confidence, several constants which characterize the learned components and govern the size of the tracking error bound. This ensures plans are guaranteed to be safely tracked at runtime. We validate that our guarantees translate to empirical safety in simulation on a 10D quadrotor, and in the real world on a physical CrazyFlie quadrotor and Clearpath Jackal robot, whereas baselines that ignore the model error and stochasticity are unsafe.
translated by 谷歌翻译
我们为一类不确定的控制型非线性系统提供了一种运动计划算法,该系统可以在使用高维传感器测量值(例如RGB-D图像)和反馈控制循环中的学习感知模块时确保运行时安全性和目标达到性能。首先,给定状态和观察数据集,我们训练一个感知系统,该系统试图从观察结果中倒入状态的一部分,并估计感知错误上的上限,该误差有效,在数据附近有可信赖的域中具有很高的概率。接下来,我们使用收缩理论来设计稳定的状态反馈控制器和收敛的动态观察者,该观察者使用学习的感知系统来更新其状态估计。当该控制器在动力学和不正确状态估计中遇到错误时,我们会在轨迹跟踪误差上得出一个绑定。最后,我们将此绑定到基于采样的运动计划器中,引导它返回可以使用传感器数据在运行时安全跟踪的轨迹。我们展示了我们在4D汽车上模拟的方法,6D平面四极管以及使用RGB(-D)传感器测量的17D操纵任务,这表明我们的方法安全可靠地将系统转向了目标,而无法考虑的基线,这些基线无法考虑。受信任的域或状态估计错误可能不安全。
translated by 谷歌翻译
收缩理论是一种分析工具,用于研究以均匀的正面矩阵定义的收缩度量下的非自主(即,时变)非线性系统的差动动力学,其存在导致增量指数的必要和充分表征多种溶液轨迹彼此相互稳定性的稳定性。通过使用平方差分长度作为Lyapunov样功能,其非线性稳定性分析向下沸腾以找到满足以表达为线性矩阵不等式的稳定条件的合适的收缩度量,表明可以在众所周知的线性系统之间绘制许多平行线非线性系统理论与收缩理论。此外,收缩理论利用了与比较引理结合使用的指数稳定性的优越稳健性。这产生了基于神经网络的控制和估计方案的急需安全性和稳定性保证,而不借助使用均匀渐近稳定性的更涉及的输入到状态稳定性方法。这种独特的特征允许通过凸优化来系统构造收缩度量,从而获得了由于扰动和学习误差而在外部扰动的时变的目标轨迹和解决方案轨迹之间的距离上的明确指数界限。因此,本文的目的是介绍了收缩理论的课程概述及其在确定性和随机系统的非线性稳定性分析中的优点,重点导出了各种基于学习和数据驱动的自动控制方法的正式鲁棒性和稳定性保证。特别是,我们提供了使用深神经网络寻找收缩指标和相关控制和估计法的技术的详细审查。
translated by 谷歌翻译
我们呈现$ \ mathcal {cl} _1 $ - $ \ mathcal {gp} $,控制框架,使能安全同时学习和控制能够进行不确定因素的系统。这两个主要成分是基于收缩理论的$ \ mathcal {l} _1 $($ \ mathcal {cl} _1 $)控制和贝叶斯学习以高斯过程(GP)回归。$ \ mathcal {cl} _1 $控制器可确保在提供安全证书时满足控制目标。此外,$ \ mathcal {cl} _1 $ - $ \ mathcal {gp} $将任何可用数据纳入了GP的不确定因素模型,这提高了性能并使运动计划能够安全地实现最佳状态。这样,即使在学习瞬变期间,也可以保证系统的安全操作。我们提供了一些用于在各种环境中安全学习和控制平面的平面电路系统的说明性示例。
translated by 谷歌翻译
本文提出了一种基于匹配不确定性的非线性系统的收缩指标和干扰估计的轨迹中心学习控制方法。该方法允许使用广泛的模型学习工具,包括深神经网络,以学习不确定的动态,同时仍然在整个学习阶段提供瞬态跟踪性能的保证,包括没有学习的特殊情况。在所提出的方法中,提出了一种扰动估计法,以估计不确定性的点值,具有预计估计误差限制(EEB)。学习的动态,估计的紊乱和EEB在强大的黎曼能量条件下并入,以计算控制法,即使学习模型较差,也能保证在整个学习阶段的所需轨迹对所需轨迹的指数趋同。另一方面,具有改进的精度,学习的模型可以在高级计划器中结合,以规划更好的性能,例如降低能耗和更短的旅行时间。建议的框架在平面Quadrotor导航示例上验证。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
稳定性和安全性是成功部署自动控制系统的关键特性。作为一个激励示例,请考虑在复杂的环境中自动移动机器人导航。概括到不同操作条件的控制设计需要系统动力学模型,鲁棒性建模错误以及对安全\ newzl {约束}的满意度,例如避免碰撞。本文开发了一个神经普通微分方程网络,以从轨迹数据中学习哈密顿系统的动态。学识渊博的哈密顿模型用于合成基于能量的被动性控制器,并分析其\ emph {鲁棒性},以在学习模型及其\ emph {Safety}中对环境施加的约束。考虑到系统的所需参考路径,我们使用虚拟参考调查员扩展了设计,以实现跟踪控制。州长国家是一个调节点,沿参考路径移动,平衡系统能级,模型不确定性界限以及违反安全性的距离,以确保稳健性和安全性。我们的哈密顿动力学学习和跟踪控制技术在\修订后的{模拟的己谐和四型机器人}在混乱的3D环境中导航。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
translated by 谷歌翻译
响应于不同规格的产品的不断变化的原料供应和市场需求,需要在时变的操作条件和目标(例如,设定值)的过程中运行,以改善过程经济,与预定的传统过程操作相比均衡。本文开发了一种用于非线性化学过程的基于收缩理论的控制方法,以实现时变参考跟踪。这种方法利用神经网络的通用近似特征,采用离散时间收缩分析和控制。它涉及训练神经网络以学习嵌入基于收缩的控制器中的收缩度量和差分反馈增益。第二个,单独的神经网络也结合到控制循环中,以在线学习不确定系统模型参数。得到的控制方案能够实现有效的偏移跟踪时变的参考,其具有全范围的模型不确定性,而无需控制器结构作为参考变化重新设计。这是一种强大的方法,可以在工艺模型中处理流程模型中的有界参数不确定性,这些方法通常遇到工业(化学)过程中。这种方法还确保在线同时学习和控制期间的过程稳定性。提供模拟实施例以说明上述方法。
translated by 谷歌翻译
在本文中,我们通过概率保证解决了基于采样的运动计划和测量不确定性的问题。我们概括了基于基于树的基于树木的运动计划算法,以确定性系统并提出信念-USHAMCAL {a} $,该框架将任何基于动力学的树的计划者扩展到线性(或可线化)系统的信念空间。我们为信仰空间介绍了适当的抽样技术和距离指标,以保留基础规划师的概率完整性和渐近最佳性能。我们证明了我们在模拟方面对自动化和非全面系统有效和渐近地找到安全低成本路径的疗效。
translated by 谷歌翻译
本文涉及专业示范的学习安全控制法。我们假设系统动态和输出测量图的适当模型以及相应的错误界限。我们首先提出强大的输出控制屏障功能(ROCBF)作为保证安全的手段,通过控制安全集的前向不变性定义。然后,我们提出了一个优化问题,以从展示安全系统行为的专家演示中学习RocBF,例如,从人类运营商收集的数据。随着优化问题,我们提供可验证条件,可确保获得的Rocbf的有效性。这些条件在数据的密度和学习函数的LipsChitz和Lipshitz和界限常数上说明,以及系统动态和输出测量图的模型。当ROCBF的参数化是线性的,然后,在温和的假设下,优化问题是凸的。我们在自动驾驶模拟器卡拉验证了我们的调查结果,并展示了如何从RGB相机图像中学习安全控制法。
translated by 谷歌翻译
基于屏障函数的控制证书一直是一个强大的工具,可能为动态系统生成可能的安全控制策略。但是,基于屏障证书的现有方法通常用于具有可微差动态的白盒系统,这使得它们可以不适用于系统是黑盒的许多实用应用,并且不能准确地建模。另一方面,黑盒系统的无模型加强学习(RL)方法缺乏安全保证和低采样效率。在本文中,我们提出了一种新的方法,可以为黑盒动态系​​统学习安全控制政策和屏障证书,而无需准确的系统模型。我们的方法即使在黑盒式动态系统是不可差分的情况下,我们也可以重新设计损耗函数以反向传播梯度对控制策略,并且我们表明安全证书在黑盒系统上保持。仿真的经验结果表明,与最先进的黑匣子安全控制方法相比,我们的方法可以通过实现近100%的安全性和目标来实现近100%的安全性和目标达到速度。我们的学习代理商也可以在保持原始性能的同时概括取消观察方案。源代码可以在https://github.com/zengyi-qin/bcbf找到。
translated by 谷歌翻译
到达状态的密度可以帮助理解安全至关重要的系统的风险,尤其是在最坏情况下的情况过于保守的情况下。最近的工作提供了一种数据驱动的方法来计算自主系统在线前进状态的密度分布。在本文中,我们研究了这种方法与模型预测控制在不确定性下的可验证安全路径计划的结合。我们首先使用学习的密度分布来计算在线碰撞的风险。如果这种风险超过可接受的阈值,我们的方法将计划在先前轨迹周围采取新的途径,并在阈值以下碰撞风险。我们的方法非常适合处理具有不确定性和复杂动力学的系统,因为我们的数据驱动方法不需要系统动力学的分析形式,并且可以通过不确定性的任意初始分布来估算正向状态密度。我们设计了两个具有挑战性的场景(自动驾驶和气垫船控制),以在系统不确定性下的障碍物中进行安全运动计划。我们首先表明我们的密度估计方法可以达到与基于蒙特卡洛的方法相似的准确性,同时仅使用0.01倍训练样本。通过利用估计的风险,我们的算法在执行超过0.99的安全速率时达到目标达到最高成功率。
translated by 谷歌翻译
许多机器人任务需要高维传感器,如相机和激光雷达,以导航复杂的环境,但是在这些传感器周围开发认可的安全反馈控制器仍然是一个具有挑战性的公开问题,特别是在涉及学习时的开放问题。以前的作品通过分离感知和控制子系统并对感知子系统的能力做出强烈的假设来证明了感知反馈控制器的安全性。在这项工作中,我们介绍了一种新的启用学习的感知反馈混合控制器,在那里我们使用控制屏障函数(CBF)和控制Lyapunov函数(CLF)来显示全堆叠感知反馈控制器的安全性和活力。我们使用神经网络直接在机器人的观察空间中学习全堆栈系统的CBF和CLF,而无需承担基于感知的状态估计器。我们的混合控制器称为基因座(使用切换启用了学习的观察反馈控制),可以安全地导航未知的环境,始终如一地达到其目标,并将安全性安全地概括为培训数据集之外的环境。我们在模拟和硬件中展示了实验中的轨迹,在那里它使用LIDAR传感器的反馈成功地导航变化环境。
translated by 谷歌翻译
非线性自适应控制理论中的一个关键假设是系统的不确定性可以在一组已知基本函数的线性跨度中表示。虽然该假设导致有效的算法,但它将应用限制为非常特定的系统类别。我们介绍一种新的非参数自适应算法,其在参数上学习无限尺寸密度,以取消再现内核希尔伯特空间中的未知干扰。令人惊讶的是,所产生的控制输入承认,尽管其底层无限尺寸结构,但是尽管它的潜在无限尺寸结构实现了其实施的分析表达。虽然这种自适应输入具有丰富和富有敏感性的 - 例如,传统的线性参数化 - 其计算复杂性随时间线性增长,使其比其参数对应力相对较高。利用随机傅里叶特征的理论,我们提供了一种有效的随机实现,该实现恢复了经典参数方法的复杂性,同时可透明地保留非参数输入的表征性。特别地,我们的显式范围仅取决于系统的基础参数,允许我们所提出的算法有效地缩放到高维系统。作为该方法的说明,我们展示了随机近似算法学习由牛顿重力交互的十点批量组成的60维系统的预测模型的能力。
translated by 谷歌翻译
本研究提出了一种具有动态障碍物和不均匀地形的部分可观察环境中的BipeDal运动的安全任务和运动计划(夯实)的分层综合框架。高级任务规划师采用线性时间逻辑(LTL),用于机器人及其环境之间的反应游戏合成,并为导航安全和任务完成提供正式保证。为了解决环境部分可观察性,在高级导航计划者采用信仰抽象,以估计动态障碍的位置。因此,合成的动作规划器向中级运动规划器发送一组运动动作,同时基于运动过程的阶数模型(ROM)结合从安全定理提取的安全机置规范。运动计划程序采用ROM设计安全标准和采样算法,以生成准确跟踪高级动作的非周期性运动计划。为了解决外部扰动,本研究还调查了关键帧运动状态的安全顺序组成,通过可达性分析实现了对外部扰动的强大转变。最终插值一组基于ROM的超参数,以设计由轨迹优化生成的全身运动机器,并验证基于ROM的可行部署,以敏捷机器人设计的20多个自由的Cassie机器人。
translated by 谷歌翻译
本文考虑了安全协调一个配备传感器的机器人团队的问题,以减少有关动态过程的不确定性,而该过程将使目标消除信息增益和能源成本。优化这种权衡是可取的,但是在机器人轨迹集中导致非占主酮目标函数。因此,基于协调下降的普通多机器人计划者失去了其性能保证。此外,处理非单调性的方法在受到机器人间碰撞避免约束时会失去其性能保证。由于需要保留性能保证和安全保证,这项工作提出了一种分布式计划者的层次结构方法,该方法使用本地搜索,并根据控制屏障功能提供了基于控制屏障功能的当地搜索和分散的控制器,以确保安全并鼓励及时到达传感位置。通过大量的模拟,硬件测试和硬件实验,我们证明了所提出的方法比基于坐标下降的算法在感应和能源成本之间取得更好的权衡。
translated by 谷歌翻译
Safe and smooth robot motion around obstacles is an essential skill for autonomous robots, especially when operating around people and other robots. Conventionally, due to real-time operation requirements and onboard computation limitations, many robot motion planning and control methods follow a two-step approach: first construct a (e.g., piecewise linear) collision-free reference path for a simplified robot model, and then execute the reference plan via path-following control for a more accurate and complex robot model. A challenge of such a decoupled robot motion planning and control method for highly dynamic robotic systems is ensuring the safety of path-following control as well as the successful completion of the reference plan. In this paper, we introduce a novel dynamical systems approach for online closed-loop time parametrization, called $\textit{a time governor}$, of a reference path for provably correct and safe path-following control based on feedback motion prediction, where the safety of robot motion under path-following control is continuously monitored using predicted robot motion. After introducing the general framework of time governors for safe path following, we present an example application for the fully actuated high-order robot dynamics using proportional-and-higher-order-derivative (PhD) path-following control whose feedback motion prediction is performed by Lyapunov ellipsoids and Vandemonde simplexes. In numerical simulations, we investigate the role of reference position and velocity feedback, and motion prediction on path-following performance and robot motion.
translated by 谷歌翻译
本文开发了一种基于模型的强化学习(MBR)框架,用于在线在线学习无限范围最佳控制问题的价值函数,同时遵循表示为控制屏障功能(CBFS)的安全约束。我们的方法是通过开发一种新型的CBFS,称为Lyapunov样CBF(LCBF),其保留CBFS的有益特性,以开发最微创的安全控制政策,同时也具有阳性半自动等所需的Lyapunov样品质 - 义法。我们展示这些LCBFS如何用于增强基于学习的控制策略,以保证安全性,然后利用这种方法在MBRL设置中开发安全探索框架。我们表明,我们的开发方法可以通过各种数值示例来处理比较法的更通用的安全限制。
translated by 谷歌翻译