基于屏障函数的控制证书一直是一个强大的工具,可能为动态系统生成可能的安全控制策略。但是,基于屏障证书的现有方法通常用于具有可微差动态的白盒系统,这使得它们可以不适用于系统是黑盒的许多实用应用,并且不能准确地建模。另一方面,黑盒系统的无模型加强学习(RL)方法缺乏安全保证和低采样效率。在本文中,我们提出了一种新的方法,可以为黑盒动态系​​统学习安全控制政策和屏障证书,而无需准确的系统模型。我们的方法即使在黑盒式动态系统是不可差分的情况下,我们也可以重新设计损耗函数以反向传播梯度对控制策略,并且我们表明安全证书在黑盒系统上保持。仿真的经验结果表明,与最先进的黑匣子安全控制方法相比,我们的方法可以通过实现近100%的安全性和目标来实现近100%的安全性和目标达到速度。我们的学习代理商也可以在保持原始性能的同时概括取消观察方案。源代码可以在https://github.com/zengyi-qin/bcbf找到。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
许多机器人任务需要高维传感器,如相机和激光雷达,以导航复杂的环境,但是在这些传感器周围开发认可的安全反馈控制器仍然是一个具有挑战性的公开问题,特别是在涉及学习时的开放问题。以前的作品通过分离感知和控制子系统并对感知子系统的能力做出强烈的假设来证明了感知反馈控制器的安全性。在这项工作中,我们介绍了一种新的启用学习的感知反馈混合控制器,在那里我们使用控制屏障函数(CBF)和控制Lyapunov函数(CLF)来显示全堆叠感知反馈控制器的安全性和活力。我们使用神经网络直接在机器人的观察空间中学习全堆栈系统的CBF和CLF,而无需承担基于感知的状态估计器。我们的混合控制器称为基因座(使用切换启用了学习的观察反馈控制),可以安全地导航未知的环境,始终如一地达到其目标,并将安全性安全地概括为培训数据集之外的环境。我们在模拟和硬件中展示了实验中的轨迹,在那里它使用LIDAR传感器的反馈成功地导航变化环境。
translated by 谷歌翻译
在强化学习(RL)的试验和错误机制中,我们期望学习安全的政策时出现臭名昭着的矛盾:如何学习没有足够数据和关于危险区域的先前模型的安全政策?现有方法主要使用危险行动的后期惩罚,这意味着代理人不会受到惩罚,直到体验危险。这一事实导致代理商也无法在收敛之后学习零违规政策。否则,它不会收到任何惩罚并失去有关危险的知识。在本文中,我们提出了安全设置的演员 - 评论家(SSAC)算法,它使用面向安全的能量函数或安全索引限制了策略更新。安全索引旨在迅速增加,以便潜在的危险行动,这使我们能够在动作空间上找到安全设置,或控制安全集。因此,我们可以在服用它们之前识别危险行为,并在收敛后进一步获得零限制违规政策。我们声称我们可以以类似于学习价值函数的无模型方式学习能量函数。通过使用作为约束目标的能量函数转变,我们制定了受约束的RL问题。我们证明我们基于拉格朗日的解决方案确保学习的政策将收敛到某些假设下的约束优化。在复杂的模拟环境和硬件循环(HIL)实验中评估了所提出的算法,具有来自自动车辆的真实控制器。实验结果表明,所有环境中的融合政策达到了零限制违规和基于模型的基线的相当性能。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
安全是使用强化学习(RL)控制复杂动态系统的主要考虑,其中安全证书可以提供可提供的安全保证。有效的安全证书是指示安全状态具有低能量的能量功能,存在相应的安全控制策略,允许能量函数始终消散。安全证书和安全控制政策彼此密切相关,并挑战合成。因此,现有的基于学习的研究将它们中的任何一种视为先验知识,以便学习另一个知识,这限制了它们与一般未知动态的适用性。本文提出了一种新的方法,同时综合基于能量函数的安全证书,并使用CRL学习安全控制策略。我们不依赖于有关基于型号的控制器或完美的安全证书的先验知识。特别是,我们通过最小化能量增加,制定损耗功能来优化安全证书参数。通过将此优化过程作为外循环添加到基于拉格朗日的受限增强学习(CRL),我们共同更新策略和安全证书参数,并证明他们将收敛于各自的本地Optima,最佳安全政策和有效的安全性证书。我们在多个安全关键基准环境中评估我们的算法。结果表明,该算法学习无限制违规的可信安全的政策。合成安全证书的有效性或可行性也在数值上进行了验证。
translated by 谷歌翻译
对自动驾驶车辆的路径跟踪控制可以从深入学习中受益,以应对长期存在的挑战,例如非线性和不确定性。但是,深度神经控制器缺乏安全保证,从而限制了其实际使用。我们提出了一种新的学习方法的新方法,该方法几乎是在神经控制器下为系统设置的正向设置,以定量分析深神经控制器对路径跟踪的安全性。我们设计了基于抽样的学习程序,用于构建候选神经屏障功能,以及利用神经网络的鲁棒性分析的认证程序来确定完全满足屏障条件的区域。我们在学习和认证之间使用对抗性训练循环来优化几乎级词的功能。学习的障碍也可用于通过可及性分析来构建在线安全监视器。我们证明了我们的方法在量化各种模拟环境中神经控制器安全性方面的有效性,从简单的运动学模型到具有高保真车辆动力学模拟的TORCS模拟器。
translated by 谷歌翻译
在许多情况下,增强学习(RL)已被证明是有效的。但是,通常需要探索足够多的国家行动对,其中一些对不安全。因此,其应用于安全至关重要的系统仍然是一个挑战。解决安全性的越来越普遍的方法涉及将RL动作投射到安全的一组动作上的安全层。反过来,此类框架的困难是如何有效地将RL与安全层搭配以提高学习绩效。在本文中,我们将安全性作为基于型号的RL框架中的可区分强大控制式 - 助推器功能层。此外,我们还提出了一种模块化学习基本奖励驱动的任务的方法,独立于安全限制。我们证明,这种方法既可以确保安全性,又可以有效地指导一系列实验中的训练期间的探索,包括以模块化的方式学习奖励时,包括零拍传递。
translated by 谷歌翻译
小型航空车的重量,空间和功率限制通常会阻止现代控制技术的应用,而无需简化大量模型。此外,高速敏捷行为(例如在无人机赛车中表现出来的行为)使这些简化的模型过于不可靠,无法安全至关重要。在这项工作中,我们介绍了时变备份控制器(TBC)的概念:用户指定的操作与备份控制器相结合,该备份控制器生成了参考轨迹,从而确保了非线性系统的安全性。与传统的备份控制器相比,TBC减少了保守主义,可以直接应用于多机构协调以确保安全性。从理论上讲,我们提供了严格减少保守主义的条件,描述了如何在多个TBC之间切换并显示如何将TBC嵌入多代理设置。在实验上,我们验证TBC在过滤飞行员的动作时会安全地增加操作自由,并在将两个四肢的分散安全过滤应用于分散的安全过滤时,证明了稳健性和计算效率。
translated by 谷歌翻译
当任何安全违规可能导致灾难性失败时,赛车要求每个车辆都能在其物质范围内驾驶。在这项工作中,我们研究了自主赛车的安全强化学习(RL)的问题,使用车辆的自我摄像机视图和速度作为输入。鉴于任务的性质,自主代理需要能够1)识别并避免复杂的车辆动态下的不安全场景,而2)在快速变化的环境中使子第二决定。为了满足这些标准,我们建议纳入汉密尔顿 - 雅各(HJ)可达性理论,是一般非线性系统的安全验证方法,进入受约束的马尔可夫决策过程(CMDP)框架。 HJ可达性不仅提供了一种了解安全的控制理论方法,还可以实现低延迟安全验证。尽管HJ可达性传统上不可扩展到高维系统,但我们证明了具有神经逼近的,可以直接在视觉上下文中学习HJ安全值 - 迄今为止通过该方法研究的最高尺寸问题。我们在最近发布的高保真自主赛车环境中评估了我们在几个基准任务中的方法,包括安全健身房和学习(L2R)。与安全健身房的其他受约束的RL基线相比,我们的方法非常少的限制性违规,并在L2R基准任务上实现了新的最先进结果。我们在以下匿名纸质网站提供额外可视化代理行为:https://sites.google.com/view/safeautomouracing/home
translated by 谷歌翻译
强化学习(RL)是一种有希望的方法,对现实世界的应用程序取得有限,因为确保安全探索或促进充分利用是控制具有未知模型和测量不确定性的机器人系统的挑战。这种学习问题对于连续空间(状态空间和动作空间)的复杂任务变得更加棘手。在本文中,我们提出了一种由几个方面组成的基于学习的控制框架:(1)线性时间逻辑(LTL)被利用,以便于可以通过无限视野的复杂任务转换为新颖的自动化结构; (2)我们为RL-Agent提出了一种创新的奖励计划,正式保证,使全球最佳政策最大化满足LTL规范的概率; (3)基于奖励塑造技术,我们开发了利用自动机构结构的好处进行了模块化的政策梯度架构来分解整体任务,并促进学习控制器的性能; (4)通过纳入高斯过程(GPS)来估计不确定的动态系统,我们使用指数控制屏障功能(ECBF)综合基于模型的保障措施来解决高阶相对度的问题。此外,我们利用LTL自动化和ECBF的性质来构建引导过程,以进一步提高勘探效率。最后,我们通过多个机器人环境展示了框架的有效性。我们展示了这种基于ECBF的模块化深RL算法在训练期间实现了近乎完美的成功率和保护安全性,并且在训练期间具有很高的概率信心。
translated by 谷歌翻译
控制屏障功能(CBFS)已成为强制执行控制系统安全的流行工具。CBFS通常用于二次程序配方(CBF-QP)作为安全关键限制。CBFS中的$ \ Mathcal {K} $函数通常需要手动调整,以平衡每个环境的性能和安全之间的权衡。然而,这个过程通常是启发式的并且可以对高相对度系统进行棘手。此外,它可以防止CBF-QP概括到现实世界中的不同环境。通过将CBF-QP的优化过程嵌入深度学习架构中的可差异化层,我们提出了一种可分辨率的优化的安全性关键控制框架,使得具有前向不变性的新环境的泛化。最后,我们在各种环境中使用2D双层集成器系统验证了所提出的控制设计。
translated by 谷歌翻译
神经网络(NNS)已成功地用于代表复杂动力学系统的状态演变。这样的模型,称为NN动态模型(NNDMS),使用NN的迭代噪声预测来估计随时间推移系统轨迹的分布。尽管它们的准确性,但对NNDMS的安全分析仍然是一个具有挑战性的问题,并且在很大程度上尚未探索。为了解决这个问题,在本文中,我们介绍了一种为NNDM提供安全保证的方法。我们的方法基于随机屏障函数,其与安全性的关系类似于Lyapunov功能的稳定性。我们首先展示了通过凸优化问题合成NNDMS随机屏障函数的方法,该问题又为系统的安全概率提供了下限。我们方法中的一个关键步骤是,NNS的最新凸近似结果的利用是找到零件线性边界,这允许将屏障函数合成问题作为一个方形优化程序的制定。如果获得的安全概率高于所需的阈值,则该系统将获得认证。否则,我们引入了一种生成控制系统的方法,该系统以最小的侵入性方式稳健地最大化安全概率。我们利用屏障函数的凸属性来提出最佳控制合成问题作为线性程序。实验结果说明了该方法的功效。即,他们表明该方法可以扩展到具有多层和数百个神经元的多维NNDM,并且控制器可以显着提高安全性概率。
translated by 谷歌翻译
最近,基于障碍函数的安全强化学习(RL)与actor-批评结构用于连续控制任务的批评结构已经受到越来越受到关注。使用安全性和收敛保证,学习近最优控制政策仍然挑战。此外,很少有效地解决了在时变的安全约束下的安全RL算法设计。本文提出了一种基于模型的安全RL算法,用于具有时变状态和控制约束的非线性系统的最佳控制。在拟议的方法中,我们构建了一种新的基于障碍的控制策略结构,可以保证控制安全性。提出了一种多步骤策略评估机制,以预测策略在时变的安全限制下的安全风险,并指导政策安全更新。证明了稳定性和稳健性的理论结果。此外,分析了演员 - 评论家学习算法的收敛。所提出的算法的性能优于模拟安全健身房环境中的几种最先进的RL算法。此外,该方法适用于两个现实世界智能车辆的综合路径和碰撞避免问题。差动驱动车辆和Ackermann-Drive分别用于验证离线部署性能和在线学习性能。我们的方法在实验中显示了令人印象深刻的SIM-to-Real的转移能力和令人满意的在线控制性能。
translated by 谷歌翻译
本文提出了一种数据驱动方法,用于使用收缩理论从离线数据学习收敛控制策略。收缩理论使得构建一种使闭环系统轨迹固有地朝向独特的轨迹的策略构成策略。在技​​术水平,识别收缩度量,该收缩度量是关于机器人的轨迹表现出收缩的距离度量通常是非琐碎的。我们建议共同了解控制政策及其相应的收缩度量,同时执行收缩。为此,我们从由机器人的状态和输入轨迹组成的离线数据集中学习机器人系统的隐式动态模型。使用此学习的动态模型,我们提出了一种用于学习收缩策略的数据增强算法。我们随机生成状态空间中的样本,并通过学习的动态模型在时间上向前传播,以生成辅助样本轨迹。然后,我们学习控制策略和收缩度量,使得来自离线数据集的轨迹之间的距离和我们生成的辅助样品轨迹随时间的减小。我们评估我们提出的模拟机器人目标达成任务的拟议框架的表现,并证明了执行收缩的速度较快,较快的收敛性和更大的学习政策的鲁棒性。
translated by 谷歌翻译
本文介绍了机器人系统的安全关键控制的框架,当配置空间中的安全区域上定义了安全区域时。为了保持安全性,我们基于控制屏障函数理论综合安全速度而不依赖于机器人的A可能复杂的高保真动态模型。然后,我们跟踪跟踪控制器的安全速度。这使得在无模型安全关键控制中。我们证明了拟议方法的理论安全保障。最后,我们证明这种方法是适用于棘手的。我们在高保真仿真中使用SEGWAY执行障碍避免任务,以及在硬件实验中的无人机和Quadruped。
translated by 谷歌翻译
This paper provides an introduction and overview of recent work on control barrier functions and their use to verify and enforce safety properties in the context of (optimization based) safety-critical controllers. We survey the main technical results and discuss applications to several domains including robotic systems.
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
基于能量功能的安全证书可以为复杂机器人系统的安全控制任务提供可证明的安全保证。但是,所有有关基于学习的能量功能合成的最新研究仅考虑可行性,这可能会导致过度保存并导致效率较低的控制器。在这项工作中,我们提出了幅度的正规化技术,以通过降低能量功能内部的保守性,同时保持有希望的可证明的安全保证,以提高安全控制器的效率。具体而言,我们通过能量函数的幅度来量化保守性,并通过在合成损失中增加幅度的正则化项来降低保守性。我们提出了使用加固学习(RL)进行合成的SAFEMR算法来统一安全控制器和能量功能的学习过程。实验结果表明,所提出的方法确实会降低能量功能的保守性,并在控制器效率方面优于基准,同时确保安全性。
translated by 谷歌翻译
将无人机应用扩展到复杂任务的研究需要稳定的控制框架。最近,在许多研究中,对机器人控制以完成复杂的任务进行了深入的强化学习(RL)算法。不幸的是,由于难以解释博学的政策和缺乏稳定保证,尤其是对于诸如攀岩无人机之类的复杂任务,因此深入的RL算法可能不适合直接部署到现实世界的机器人平台中。本文提出了一种新型的混合体系结构,该结构通过使用无模型的Deep RL算法学习的强大策略来增强名义控制器。所提出的架构采用不确定性感受的控制搅拌机来保留名义控制器的保证稳定性,同时使用学习策略的扩展性能。该政策在模拟环境中进行了数千个域随机化的培训,以实现多样化的不确定性的稳健性能。通过现实世界实验验证了所提出的方法的性能,然后与传统的控制器和经过香草深RL算法训练的基于最新的学习控制器进行了比较。
translated by 谷歌翻译