在本文中,我们通过概率保证解决了基于采样的运动计划和测量不确定性的问题。我们概括了基于基于树的基于树木的运动计划算法,以确定性系统并提出信念-USHAMCAL {a} $,该框架将任何基于动力学的树的计划者扩展到线性(或可线化)系统的信念空间。我们为信仰空间介绍了适当的抽样技术和距离指标,以保留基础规划师的概率完整性和渐近最佳性能。我们证明了我们在模拟方面对自动化和非全面系统有效和渐近地找到安全低成本路径的疗效。
translated by 谷歌翻译
We propose a path planning methodology for a mobile robot navigating through an obstacle-filled environment to generate a reference path that is traceable with moderate sensing efforts. The desired reference path is characterized as the shortest path in an obstacle-filled Gaussian belief manifold equipped with a novel information-geometric distance function. The distance function we introduce is shown to be an asymmetric quasi-pseudometric and can be interpreted as the minimum information gain required to steer the Gaussian belief. An RRT*-based numerical solution algorithm is presented to solve the formulated shortest-path problem. To gain insight into the asymptotic optimality of the proposed algorithm, we show that the considered path length function is continuous with respect to the topology of total variation. Simulation results demonstrate that the proposed method is effective in various robot navigation scenarios to reduce sensing costs, such as the required frequency of sensor measurements and the number of sensors that must be operated simultaneously.
translated by 谷歌翻译
多机器人运动计划(MRMP)是在运动动力学约束下针对在环境中作用的多个机器人的非缩进轨迹的基本问题。由于其复杂性,现有算法要么利用简化的假设或不完整。这项工作引入了基于动力学冲突的搜索(K-CB),这是一种分散的(分离)MRMP算法,是一般,可扩展性和概率完成的。该算法从成功的解决方案到MRMP的离散类似物(被称为多试路径查找(MAPF))具有灵感。具体来说,我们将基于冲突的搜索(CBS)(一种流行的分散MAPF算法)调整为MRMP设置。这种适应的新颖性是我们直接在连续领域工作,而无需离散化。特别是,动力动力学的约束在本地进行治疗。 K-CBS计划使用低级规划师分别为每个机器人计划,并通过定义单个机器人的约束来解决机器人之间的冲突树以解决机器人之间的碰撞。低水平的计划者可以是用于运动动力学机器人的任何基于采样的树搜索算法,从而将单个机器人的现有计划者提升为多机器人设置。我们表明,K-CBS继承了低级计划者的(概率)完整性。我们说明了在几个案例研究和基准测试中K-CB的一般性和性能。
translated by 谷歌翻译
我们研究了由测量和过程噪声引起的不确定性的动态系统的规划问题。测量噪声导致系统状态可观察性有限,并且过程噪声在给定控制的结果中导致不确定性。问题是找到一个控制器,保证系统在有限时间内达到所需的目标状态,同时避免障碍物,至少需要一些所需的概率。由于噪音,此问题不承认一般的精确算法或闭合性解决方案。我们的主要贡献是一种新颖的规划方案,采用卡尔曼滤波作为状态估计器,以获得动态系统的有限状态抽象,我们将作为马尔可夫决策过程(MDP)正式化。通过延长概率间隔的MDP,我们可以增强模型对近似过渡概率的数值不精确的鲁棒性。对于这种所谓的间隔MDP(IMDP),我们采用最先进的验证技术来有效地计算最大化目标状态概率的计划。我们展示了抽象的正确性,并提供了几种优化,旨在平衡计划的质量和方法的可扩展性。我们展示我们的方法能够处理具有6维状态的系统,该系统导致具有数万个状态和数百万个过渡的IMDP。
translated by 谷歌翻译
本文提出了一个基于抽样的运动计划者,该计划将RRT*(迅速探索随机树星)集成到预计运动原始图的数据库中,以减轻其计算负载,并允许在动态或部分已知的环境中进行运动计划。该数据库是通过在某些网格空间中考虑一组初始状态和最终状态对来构建的,并确定每个对与系统动力学和约束兼容的最佳轨迹,同时最小化成本。通过在网格状态空间中提取样品并在数据库中选择将其连接到现有节点的数据库中的最佳无障碍运动原始性,将节点逐渐添加到RRT*算法中可行轨迹树中的节点。如果可以通过无障碍的运动原始的原始较低的成本从新的采样状态达到一些节点,则树将重新接线。因此,运动计划的计算更密集的部分被移至数据库构建的初步离线阶段(以网格造成的某些性能退化为代价。可以对网格分辨率进行调整,以便在数据库的最优性和大小之间妥协。由于网格分辨率为零,并且采样状态的数量增长到无穷大,因此规划器被证明是渐近的最佳选择。
translated by 谷歌翻译
本文在具有部分未知语义的环境中解决了多机器人规划问题。假设环境具有已知的几何结构(例如,墙壁),并且由具有不确定位置和类的静态标记的地标占用。这种建模方法引发了语义SLAM算法生成的不确定语义地图。我们的目标是为配备有嘈杂感知系统的机器人设计控制策略,以便他们可以完成全局时间逻辑规范捕获的协同任务。为了指定考虑环境和感知不确定性的任务,我们采用了线性时间逻辑(LTL)的片段,称为CO-Safe LTL,定义了基于感知的原子谓性建模概率满意度要求。基于感知的LTL规划问题产生了通过新型采样的算法解决的最佳控制问题,它产生了在线更新的开环控制策略,以适应连续学习的语义地图。我们提供广泛的实验,以证明拟议的规划架构的效率。
translated by 谷歌翻译
基于采样的运动计划者,例如RRT*和BIT*,当应用于运动动力运动计划时,依靠转向功能来生成连接采样状态的时间优势解决方案。实施精确的转向功能需要针对时间最佳控制问题的分析解决方案,或者非线性编程(NLP)求解器以鉴于系统的动力学方程式解决边界值问题。不幸的是,对于许多实际域而言,分析解决方案不可用,而NLP求解器在计算上非常昂贵,因此快速且最佳的动力动力运动计划仍然是一个开放的问题。我们通过引入状态监督转向功能(S3F)来提供解决此问题的解决方案,这是一种学习时间优势转向功能的新方法。 S3F能够比其NLP对应物更快地为转向函数的数量级产生近乎最佳的解决方案。在三个具有挑战性的机器人域进行的实验表明,使用S3F的RRT*在解决方案成本和运行时都显着优于最先进的计划方法。我们进一步提供了RRT*修改以使用S3F的概率完整性的证明。
translated by 谷歌翻译
机器人通常需要解决路径规划问题,而环境的基本和离散方面则可以观察到。这引入了多模式,机器人必须能够观察并推断其环境状态。为了解决这个问题,我们介绍了计划在信仰空间中的路径树的路径优化(PTO)算法。路径树是一种类似树状的运动,具有分支点,机器人会收到可导致信仰状态更新的观察结果。机器人取决于收到的观察结果。该算法有三个主要步骤。首先,在状态空间上生长了快速探索的随机图(RRG)。其次,通过查询观察模型,将RRG扩展到信仰空间图。在第三步中,在信仰空间图上执行动态编程以提取路径树。最终的路径树结合了探索与剥削,即它平衡了获得有关环境的知识的需求,并需要达到目标。我们在导航和移动操作任务上演示了算法功能,并在最佳和运行时使用任务和运动计划方法(TAMP)表现出比基线的优势。
translated by 谷歌翻译
双向运动规划与其单向对应物相比,平均地减少计划时间。在单次查询可行的运动规划中,使用双向搜索来查找连续运动计划需要前向和反向搜索树之间的边缘连接。这样的树木连接需要解决两点边值问题问题(BVP)。然而,两点BVP解决方案可能是困难的或不可能计算许多系统。我们提出了一种新的双向搜索策略,不需要解决两点BVP。反向树的成本信息而不是直接连接前向和反向树木,而是用作前向搜索的指导启发式。这使得前向搜索能够快速收敛到可行的解决方案而不解决两点BVP。我们提出了两个新的算法(GBRRT和GABRRT),使用此策略并使用多种动态系统和现实世界硬件实验运行多个软件模拟,以表明我们的算法表现出对现有最先进的方法进行的或更好在快速找到初始可行的解决方案时。
translated by 谷歌翻译
本文解决了不确定和动态环境中的新语义多机器人计划问题。特别是,环境被不合作,移动,不确定的标记目标占据。这些目标受随机动力学的控制,而它们的当前和未来位置及其语义标签尚不确定。我们的目标是控制移动传感机器人,以便他们可以完成根据这些目标的当前/未来位置和标签定义的协作语义任务。我们使用线性时间逻辑(LTL)表达这些任务。我们提出了一种基于抽样的方法,该方法探讨了机器人运动空间,任务规范空间以及标记目标的未来配置,以设计最佳路径。这些路径在线修订以适应不确定的感知反馈。据我们所知,这是解决不确定和动态语义环境中语义任务计划问题的第一项工作。我们提供了广泛的实验,以证明该方法的效率
translated by 谷歌翻译
本文旨在提高用于车辆系统的Kinodynamic规划师的路径质量和计算效率。它提出了一个学习框架,用于在具有动态的系统的基于采样的运动规划仪的扩展过程中识别有前途的控制。离线,学习过程训练,以返回最高质量控制,以便在没有来自其当前状态和局部目标状态之间的输入差异矢量的障碍物的情况下达到局部目标状态(即航点)。数据生成方案在目标色散上提供界限,并使用状态空间修剪以确保高质量控制。通过专注于系统的动态,该过程是数据高效并发生一次动态系统,使其可用于具有模块化扩展功能的不同环境。这项工作与a)将所提出的学习过程集成了一个)探索性扩展功能,该探索性扩展函数在可到达空间上生成有偏见的覆盖范围,B)为移动机器人提出了一种利用的扩展功能,其使用内侧轴信息生成航点。本文评估了第一和二阶差分驱动系统的学习过程和相应的规划仪。结果表明,拟议的学习和规划的整合可以产生比Kinodynamic规划更好的质量路径,随机控制在较少的迭代和计算时间。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
本文介绍了一个混合在线的部分可观察到的马尔可夫决策过程(POMDP)计划系统,该系统在存在环境中其他代理商引入的多模式不确定性的情况下解决了自主导航的问题。作为一个特别的例子,我们考虑了密集的行人和障碍物中的自主航行问题。该问题的流行方法首先使用完整的计划者(例如,混合A*)生成一条路径,具有对不确定性的临时假设,然后使用基于在线树的POMDP求解器来解决问题的不确定性,并控制问题的有限方面(即沿着路径的速度)。我们提出了一种更有能力和响应的实时方法,使POMDP规划师能够控制更多的自由度(例如,速度和标题),以实现更灵活,更有效的解决方案。这种修改大大扩展了POMDP规划师必须推荐的国家空间区域,从而大大提高了在实时控制提供的有限计算预算中找到有效的推出政策的重要性。我们的关键见解是使用多Query运动计划技术(例如,概率路线图或快速行进方法)作为先验,以快速生成在有限的地平线搜索中POMDP规划树可能达到的每个状态的高效推出政策。我们提出的方法产生的轨迹比以前的方法更安全,更有效,即使在较长的计划范围内密集拥挤的动态环境中。
translated by 谷歌翻译
本文通过结合可允许的知情采样和本地抽样(即,对当前解决方案的邻域进行采样)来改善基于RRT*的基于采样的路径计划者的性能。一种自适应策略来说明成本进展,可调节勘探(可接受的知情抽样)和剥削(本地抽样)之间的权衡。该论文证明所得算法在渐近上是最佳的。此外,在模拟和制造案例研究中,其收敛率优于最先进的路径计划者,例如知情RRT*。还发布了开源ROS兼容的实现。
translated by 谷歌翻译
机器人间通信使多机器人系统能够有效地协调和执行复杂的任务。因此,维持机器人之间的通信网络的连接对于许多多机器人系统是必不可少的。在本文中,我们提出了一种用于多机器人系统的连接维护的轨迹策划局。我们首先定义加权无向图形以表示系统的连接。与以前的连接维护不同,我们明确地解释了机器人运动和传感不确定性,同时制定图形边缘权重。这些不确定性导致不确定的机器人位置,该位置直接影响系统的连接性。接下来,使用基于乘法器(ADMM)框架的分布式交替方向方法,使用轨迹规划器维持加权未向图的代数连接以上的指定的下限。在这里,我们得出了ADMM优化步骤中所需的Hessian矩阵的近似,以减少计算负荷。最后,提出了仿真结果以统计验证我们的轨迹策划者的连接维护。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
RRT*是一种有效的基于采样的运动计划算法。但是,在不利用可访问环境信息的优势的情况下,基于抽样的算法通常会导致抽样失败,产生无用的节点和/或失败探索狭窄的段落。对于本文,为了更好地利用环境信息并进一步提高搜索效率,我们提出了一种新颖的方法来改善RRT*通过1)量化邻居重新布线的障碍物配置的当地知识,以定向可见性,2)收集环境信息在搜索过程中,以及3)在第一个解决方案找到后,更改采样策略偏向近乎浮游节点。局部定向可见性(RRT* -LDV)提出的算法RRT*更好地利用了本地已知信息,并创新了加权采样策略。加速的RRT* -LDV在收敛率和找到狭窄段落的成功率上优于RRT*。还试验了高度自由度的场景。
translated by 谷歌翻译
基于最佳抽样的运动计划和轨迹优化是两个竞争框架,以生成最佳运动计划。这两个框架都有互补的属性:基于抽样的计划者通常会趋于趋势,但提供最佳保证。但是,轨迹优化器通常很快就可以收敛,但在非凸问题中不提供全局最佳保证,例如场景有障碍。为了达到两全其美,我们介绍了一个新的计划者Bitkomo,该计划者将渐近最佳的批处理知识树(BIT*)计划者与K-order Markov优化(KOMO)轨迹优化框架集成在一起。我们的计划者随时随地,并保持BIT*提供的相同的渐近优化性保证,同时还利用KOMO轨迹优化器的快速收敛性。我们在实验中评估了我们的计划者在涉及高维配置空间的操作场景方面,最多有两个7-DOF操纵器,障碍物和狭窄的通道。即使Komo失败,Bitkomo的表现也比Komo更好,并且在收敛到最佳解决方案方面,它的表现优于Bit*。
translated by 谷歌翻译
我们考虑针对翻译不变的动态系统的时间 - 最佳运动计划,该属性适用于许多移动机器人,例如差速器,汽车,飞机和多旋转器。我们的关键见解是,当与优化共生时,我们可以将图形搜索算法扩展到连续情况。对于图形搜索,我们引入了不连续性的A*(DB-A*),这是A*算法的概括,该算法使用了基于采样计划者的概念和数据结构。 db-a*重复使用短轨迹,所谓的运动原语作为边缘,并允许在顶点处最大的用户指定的不连续性。这些轨迹是通过轨迹优化在局部修复的,这也提供了新的改进的运动原语。我们的新型动力学运动计划者KMP-DB-A*几乎具有渐近的最佳行为,并迅速计算了近乎最佳的解决方案。对于我们的经验验证,我们提供了第一个基准,该基准测试在不同设置中的多个动态系统上比较搜索,采样和基于优化的时间 - 最佳运动计划。与基线相比,KMP-DB-A*始终求解更多的问题实例,找到较低成本的初始解决方案并更快地收敛。
translated by 谷歌翻译
为了安全操作,机器人必须能够避免在不确定的环境中发生碰撞。现有的不确定性运动计划方法通常会对高斯和障碍几何形状做出保守的假设。尽管视觉感知可以对环境提供更准确的表示,但其用于安全运动计划的使用受到神经网络的固有错误校准的限制以及获得足够数据集的挑战。为了解决这些模仿,我们建议采用经过系统增强数据集训练的深层语义分割网络的合奏,以确保可靠的概率占用信息。为了避免在运动计划中进行保守主义,我们通过基于场景的路径计划方法直接采用了概率感知。速度调度方案被应用于路径上,以确保跟踪不准确的情况。我们证明了系统数据增强与深层合奏结合的有效性以及与最新方法相比的基于方案的计划方法,并在涉及人手的实验中验证了我们的框架。
translated by 谷歌翻译