本文在具有部分未知语义的环境中解决了多机器人规划问题。假设环境具有已知的几何结构(例如,墙壁),并且由具有不确定位置和类的静态标记的地标占用。这种建模方法引发了语义SLAM算法生成的不确定语义地图。我们的目标是为配备有嘈杂感知系统的机器人设计控制策略,以便他们可以完成全局时间逻辑规范捕获的协同任务。为了指定考虑环境和感知不确定性的任务,我们采用了线性时间逻辑(LTL)的片段,称为CO-Safe LTL,定义了基于感知的原子谓性建模概率满意度要求。基于感知的LTL规划问题产生了通过新型采样的算法解决的最佳控制问题,它产生了在线更新的开环控制策略,以适应连续学习的语义地图。我们提供广泛的实验,以证明拟议的规划架构的效率。
translated by 谷歌翻译
本文解决了不确定和动态环境中的新语义多机器人计划问题。特别是,环境被不合作,移动,不确定的标记目标占据。这些目标受随机动力学的控制,而它们的当前和未来位置及其语义标签尚不确定。我们的目标是控制移动传感机器人,以便他们可以完成根据这些目标的当前/未来位置和标签定义的协作语义任务。我们使用线性时间逻辑(LTL)表达这些任务。我们提出了一种基于抽样的方法,该方法探讨了机器人运动空间,任务规范空间以及标记目标的未来配置,以设计最佳路径。这些路径在线修订以适应不确定的感知反馈。据我们所知,这是解决不确定和动态语义环境中语义任务计划问题的第一项工作。我们提供了广泛的实验,以证明该方法的效率
translated by 谷歌翻译
具有高级别规格的自治系统的运动规划具有广泛的应用。然而,涉及定时时间逻辑的正式语言的研究仍在调查中。此外,许多现有结果依赖于用户指定的任务在给定环境中可行的关键假设。当操作环境是动态和未知的挑战时,由于环境可以找到禁止,导致预先定时定时任务无法完全满足潜在冲突的任务。在考虑时间束缚要求时,这些问题变得更具挑战性。为了解决这些挑战,这项工作提出了一种控制框架,其考虑了强制限制来强制执行安全要求和软限制,以启用任务放松。使用度量间隔时间逻辑(MITL)规范来处理时间限制约束。通过构建轻松的定时产品自动机,在线运动规划策略与后退地平线控制器合成以产生政策,以减少优先顺序的降低方式实现多重目标1)正式保证了对硬安全限制的满足感; 2)主要满足软定时任务; 3)尽可能收集时变奖励。放松结构的另一个新颖性是考虑违反时间和任务的不可行情况。提供仿真结果以验证所提出的方法。
translated by 谷歌翻译
本文解决了以未知的马尔可夫决策过程(MDP)建模的移动机器人的学习控制策略的问题,该问题负责为时间逻辑任务,例如测序,覆盖或监视。 MDP捕获工作空间结构的不确定性和控制决策的结果。控制目标是合成一个控制策略,该策略最大化完成高级任务的可能性,该任务指定为线性时间逻辑(LTL)公式。为了解决这个问题,我们提出了一种针对LTL控制目标的新型基于模型的增强算法(RL)算法,该算法能够比相关方法更快地学习控制策略。它的样本效率依赖于偏见探索可能导致任务满意度的方向。这是通过利用LTL任务的自动机表示以及连续学习的MDP模型来完成的。最后,我们提供了比较实验,这些实验证明了针对LTL目标的最新RL方法的样本效率。
translated by 谷歌翻译
We propose a path planning methodology for a mobile robot navigating through an obstacle-filled environment to generate a reference path that is traceable with moderate sensing efforts. The desired reference path is characterized as the shortest path in an obstacle-filled Gaussian belief manifold equipped with a novel information-geometric distance function. The distance function we introduce is shown to be an asymmetric quasi-pseudometric and can be interpreted as the minimum information gain required to steer the Gaussian belief. An RRT*-based numerical solution algorithm is presented to solve the formulated shortest-path problem. To gain insight into the asymptotic optimality of the proposed algorithm, we show that the considered path length function is continuous with respect to the topology of total variation. Simulation results demonstrate that the proposed method is effective in various robot navigation scenarios to reduce sensing costs, such as the required frequency of sensor measurements and the number of sensors that must be operated simultaneously.
translated by 谷歌翻译
本文提出了一种新的方法,用于设计对自主系统的神经网络(NN)控制器的验证组合,并具有线性时间逻辑(LTL)公式捕获的任务。特别是,LTL公式要求系统以时间/逻辑顺序到达并避免某些区域。我们假设该系统配备了有限的训练有素的NN控制器。每个控制器都经过培训,以便它可以将系统推向特定的感兴趣区域,同时避免其他人。我们的目标是检查是否存在训练有素的NN控制器的时间组成(如果是这样,则将其计算)产生复合系统行为,以满足属于给定集合的任何初始系统状态的用户指定的LTL任务。为了解决这个问题,我们提出了一种依赖于自动机理论的新颖集成以及最近提出的NN控制系统的可及性分析工具的新方法。 We note that the proposed method can be applied to other controllers, not necessarily modeled by NNs, by appropriate selection of the reachability analysis tool.由于缺乏健壮性,我们专注于NN控制器。提出的方法在航空车的导航任务上得到了证明。
translated by 谷歌翻译
本文研究了运动和环境不确定性的最佳运动规划。通过将系统建模作为概率标记的马尔可夫决策过程(PL-MDP),控制目标是合成有限内存策略,在该策略下,该代理满足具有所需满足的线性时间逻辑(LTL)的高级复杂任务可能性。特别地,考虑了满足无限地平线任务的轨迹的成本优化,分析了降低预期平均成本和最大化任务满意度概率之间的权衡。而不是使用传统的Rabin Automata,LTL公式被转换为限制确定性的B \“UCHI自动机(LDBA),其具有更直接的接受条件和更紧凑的图形结构。这项工作的新颖性在于考虑案件LTL规范可能是不可行的,并且在PL-MDP和LDBA之间的轻松产品MDP的开发可能是不可行的和开发。放松的产品MDP允许代理在任务不完全可行的情况下进行修改其运动计划,并量化修订计划的违规测量。然后配制多目标优化问题,共同考虑任务满意度的概率,违反原始任务限制的违规以及策略执行的实施成本,通过耦合的线性计划解决。据最好我们的知识,它是第一个弥合规划修订版和计划前缀和计划的最佳控制合成之间的差距的工作在无限地平线上修复代理轨迹。提供实验结果以证明所提出的框架的有效性。
translated by 谷歌翻译
主动同时定位和映射(SLAM)是规划和控制机器人运动以构建周围环境中最准确,最完整的模型的问题。自从三十多年前出现了积极感知的第一项基础工作以来,该领域在不同科学社区中受到了越来越多的关注。这带来了许多不同的方法和表述,并回顾了当前趋势,对于新的和经验丰富的研究人员来说都是非常有价值的。在这项工作中,我们在主动大满贯中调查了最先进的工作,并深入研究了仍然需要注意的公开挑战以满足现代应用程序的需求。为了实现现实世界的部署。在提供了历史观点之后,我们提出了一个统一的问题制定并审查经典解决方案方案,该方案将问题分解为三个阶段,以识别,选择和执行潜在的导航措施。然后,我们分析替代方法,包括基于深入强化学习的信念空间规划和现代技术,以及审查有关多机器人协调的相关工作。该手稿以讨论新的研究方向的讨论,解决可再现的研究,主动的空间感知和实际应用,以及其他主题。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
This work considers the path planning problem for a team of identical robots evolving in a known environment. The robots should satisfy a global specification given as a Linear Temporal Logic (LTL) formula over a set of regions of interest. The proposed method exploits the advantages of Petri net models for the team of robots and B\"uchi automata modeling the specification. The approach in this paper consists in combining the two models into one, denoted Composed Petri net and use it to find a sequence of action movements for the mobile robots, providing collision free trajectories to fulfill the specification. The solution results from a set of Mixed Integer Linear Programming (MILP) problems. The main advantage of the proposed solution is the completeness of the algorithm, meaning that a solution is found when exists, this representing the key difference with our previous work in [1]. The simulations illustrate comparison results between current and previous approaches, focusing on the computational complexity.
translated by 谷歌翻译
强化学习(RL)是一种有希望的方法,对现实世界的应用程序取得有限,因为确保安全探索或促进充分利用是控制具有未知模型和测量不确定性的机器人系统的挑战。这种学习问题对于连续空间(状态空间和动作空间)的复杂任务变得更加棘手。在本文中,我们提出了一种由几个方面组成的基于学习的控制框架:(1)线性时间逻辑(LTL)被利用,以便于可以通过无限视野的复杂任务转换为新颖的自动化结构; (2)我们为RL-Agent提出了一种创新的奖励计划,正式保证,使全球最佳政策最大化满足LTL规范的概率; (3)基于奖励塑造技术,我们开发了利用自动机构结构的好处进行了模块化的政策梯度架构来分解整体任务,并促进学习控制器的性能; (4)通过纳入高斯过程(GPS)来估计不确定的动态系统,我们使用指数控制屏障功能(ECBF)综合基于模型的保障措施来解决高阶相对度的问题。此外,我们利用LTL自动化和ECBF的性质来构建引导过程,以进一步提高勘探效率。最后,我们通过多个机器人环境展示了框架的有效性。我们展示了这种基于ECBF的模块化深RL算法在训练期间实现了近乎完美的成功率和保护安全性,并且在训练期间具有很高的概率信心。
translated by 谷歌翻译
本研究提出了一种具有动态障碍物和不均匀地形的部分可观察环境中的BipeDal运动的安全任务和运动计划(夯实)的分层综合框架。高级任务规划师采用线性时间逻辑(LTL),用于机器人及其环境之间的反应游戏合成,并为导航安全和任务完成提供正式保证。为了解决环境部分可观察性,在高级导航计划者采用信仰抽象,以估计动态障碍的位置。因此,合成的动作规划器向中级运动规划器发送一组运动动作,同时基于运动过程的阶数模型(ROM)结合从安全定理提取的安全机置规范。运动计划程序采用ROM设计安全标准和采样算法,以生成准确跟踪高级动作的非周期性运动计划。为了解决外部扰动,本研究还调查了关键帧运动状态的安全顺序组成,通过可达性分析实现了对外部扰动的强大转变。最终插值一组基于ROM的超参数,以设计由轨迹优化生成的全身运动机器,并验证基于ROM的可行部署,以敏捷机器人设计的20多个自由的Cassie机器人。
translated by 谷歌翻译
在以并发方式解决团队范围的任务时,多机构系统可能非常有效。但是,如果没有正确的同步,则很难保证合并行为的正确性,例如遵循子任务的特定顺序或同时进行协作。这项工作解决了在复杂的全球任务下,将最低时间的任务计划问题称为线性时间逻辑(LTL)公式。这些任务包括独立本地动作和直接子团队合作的时间和空间要求。提出的解决方案是一种随时随地的算法,结合了对任务分解的基础任务自动机的部分顺序分析,以及用于任务分配的分支和绑定(BNB)搜索方法。提供最小的完成时间的合理性,完整性和最佳性分析。还表明,在搜索范围内持续在时间预算之内,可以迅速达成可行且近乎最佳的解决方案。此外,为了处理在线执行期间任务持续时间和代理失败的波动,提出了适应算法来同步执行状态并动态地重新分配未完成的子任务以保持正确性和最佳性。两种算法通过数值模拟和硬件实验在大规模系统上进行了严格的验证,该算法对几个强基地进行了验证。
translated by 谷歌翻译
勘探是基于深入强化学习(DRL)的无模型导航控制的基本挑战,因为针对目标驱动的导航任务的典型勘探技术依赖于噪声或贪婪的政策,这些策略对奖励的密度敏感。实际上,机器人总是在复杂的混乱环境中部署,其中包含密集的障碍和狭窄的通道,从而提高了很难探索训练的自然备用奖励。当预定义的任务复杂并且具有丰富的表现力时,这种问题变得更加严重。在本文中,我们专注于这两个方面,并为任务指导的机器人提供了一种深层的政策梯度算法,该机器人在复杂的混乱环境中部署了未知的动态系统。线性时间逻辑(LTL)用于表达丰富的机器人规范。为了克服训练期间探索的环境挑战,我们提出了一种新颖的路径计划引导奖励方案,该方案在状态空间上密集,并且至关重要的是,由于黑盒动力学而导致计算的几何路径的不可行性。为了促进LTL满意度,我们的方法将LTL任务分解为使用分布式DRL解决的子任务,在该子任务中,可以使用深层政策梯度算法并行培训子任务。我们的框架被证明可显着提高性能(有效性,效率)和对大规模复杂环境中复杂任务的机器人的探索。可以在YouTube频道上找到视频演示:https://youtu.be/yqrq2-ymtik。
translated by 谷歌翻译
行为树(BT)是一种在自主代理中(例如机器人或计算机游戏中的虚拟实体)之间在不同任务之间进行切换的方法。 BT是创建模块化和反应性的复杂系统的一种非常有效的方法。这些属性在许多应用中至关重要,这导致BT从计算机游戏编程到AI和机器人技术的许多分支。在本书中,我们将首先对BTS进行介绍,然后我们描述BTS与早期切换结构的关系,并且在许多情况下如何概括。然后,这些想法被用作一套高效且易于使用的设计原理的基础。安全性,鲁棒性和效率等属性对于自主系统很重要,我们描述了一套使用BTS的状态空间描述正式分析这些系统的工具。借助新的分析工具,我们可以对BTS如何推广早期方法的形式形式化。我们还显示了BTS在自动化计划和机器学习中的使用。最后,我们描述了一组扩展的工具,以捕获随机BT的行为,其中动作的结果由概率描述。这些工具可以计算成功概率和完成时间。
translated by 谷歌翻译
在本文中,我们通过概率保证解决了基于采样的运动计划和测量不确定性的问题。我们概括了基于基于树的基于树木的运动计划算法,以确定性系统并提出信念-USHAMCAL {a} $,该框架将任何基于动力学的树的计划者扩展到线性(或可线化)系统的信念空间。我们为信仰空间介绍了适当的抽样技术和距离指标,以保留基础规划师的概率完整性和渐近最佳性能。我们证明了我们在模拟方面对自动化和非全面系统有效和渐近地找到安全低成本路径的疗效。
translated by 谷歌翻译
机器人通常需要解决路径规划问题,而环境的基本和离散方面则可以观察到。这引入了多模式,机器人必须能够观察并推断其环境状态。为了解决这个问题,我们介绍了计划在信仰空间中的路径树的路径优化(PTO)算法。路径树是一种类似树状的运动,具有分支点,机器人会收到可导致信仰状态更新的观察结果。机器人取决于收到的观察结果。该算法有三个主要步骤。首先,在状态空间上生长了快速探索的随机图(RRG)。其次,通过查询观察模型,将RRG扩展到信仰空间图。在第三步中,在信仰空间图上执行动态编程以提取路径树。最终的路径树结合了探索与剥削,即它平衡了获得有关环境的知识的需求,并需要达到目标。我们在导航和移动操作任务上演示了算法功能,并在最佳和运行时使用任务和运动计划方法(TAMP)表现出比基线的优势。
translated by 谷歌翻译
这项工作提出了利用对机器人周围环境的逐步改善的象征感知知识的一步,以证明适用于自动驾驶问题的正确反应性控制合成。结合了运动控制和信息收集的抽象模型,我们表明假设保证规范(线性时间逻辑的子类)可用于定义和解决谨慎计划的流量规则。我们提出了一种新颖的表示,称为符号改进树,以捕获有关环境的增量知识,并体现了各种符号感知输入之间的关系。利用增量知识来合成机器人的验证反应性计划。案例研究表明,即使在部分遮挡的环境中,拟议方法在合成控制输入方面的疗效。
translated by 谷歌翻译
基于联系的决策和规划方法越来越重要,无法为腿机器人提供更高的自主性。源自符号系统的正式合成方法具有巨大的推理潜力,了解高级机器决策,并以正确的担保实现复杂的机动行动。本研究迈出了一种正式设计由受约束和动态变化环境中的任务规划和控制全身动态运动行为的架构组成的架构。在高级别,我们在多肢运动策划器和其动态环境之间制定了两个玩家时间逻辑游戏,以综合提供符号机置操作的获胜策略。这些运动动作满足时间逻辑片段中的所需高级任务规范。这些操作被发送到强大的有限转换系统,该过渡系统合成了满足状态可达性限制的运动控制器。该控制器进一步通过低级运动规划器执行,所述低级运动计划产生可行的机器人轨迹。我们构建一组动态运动模型,可用于腿机器人,作为用于处理各种环境事件的模板库。我们设计了一种重新调整策略,考虑到突然的环境变化或大状态干扰,以增加所产生的机器行为的鲁棒性。我们正式证明分层运动框架的正确性,保证了运动规划层的强大实现。在各种环境中的反应运动行为模拟表明我们的框架具有潜在的智能机置行为的理论基础。
translated by 谷歌翻译
我们研究了由测量和过程噪声引起的不确定性的动态系统的规划问题。测量噪声导致系统状态可观察性有限,并且过程噪声在给定控制的结果中导致不确定性。问题是找到一个控制器,保证系统在有限时间内达到所需的目标状态,同时避免障碍物,至少需要一些所需的概率。由于噪音,此问题不承认一般的精确算法或闭合性解决方案。我们的主要贡献是一种新颖的规划方案,采用卡尔曼滤波作为状态估计器,以获得动态系统的有限状态抽象,我们将作为马尔可夫决策过程(MDP)正式化。通过延长概率间隔的MDP,我们可以增强模型对近似过渡概率的数值不精确的鲁棒性。对于这种所谓的间隔MDP(IMDP),我们采用最先进的验证技术来有效地计算最大化目标状态概率的计划。我们展示了抽象的正确性,并提供了几种优化,旨在平衡计划的质量和方法的可扩展性。我们展示我们的方法能够处理具有6维状态的系统,该系统导致具有数万个状态和数百万个过渡的IMDP。
translated by 谷歌翻译