行动调速器是标称控制循环的附加方案,该方案监视和调整控制措施以强制执行以端加状态和控制约束表示的安全规范。在本文中,我们介绍了系统的强大动作调速器(RAG),该动力学可以使用具有参数和加法不确定性的离散时间分段仿射(PWA)模型来表示,并受到非convex约束。我们开发了抹布的理论属性和计算方法。之后,我们介绍了抹布来实现安全加强学习(RL),即确保在线RL勘探和探索过程中的历史约束满意度。该开发使控制策略的安全实时演变和适应操作环境和系统参数的变化(由于老化,损坏等)。我们通过考虑将其应用于质量 - 弹簧式抑制系统的软地面问题来说明抹布在约束执法和安全RL中的有效性。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
在将强化学习(RL)部署到现实世界系统中时,确保安全是一个至关重要的挑战。我们开发了基于置信的安全过滤器,这是一种基于概率动力学模型的标准RL技术,通过标准RL技术学到的名义策略来证明国家安全限制的控制理论方法。我们的方法基于对成本功能的国家约束的重新重新制定,从而将安全验证减少到标准RL任务。通过利用幻觉输入的概念,我们扩展了此公式,以确定对具有很高可能性的未知系统安全的“备份”策略。最后,在推出备用政策期间的每一个时间步骤中,标称政策的调整最少,以便以后可以保证安全恢复。我们提供正式的安全保证,并从经验上证明我们方法的有效性。
translated by 谷歌翻译
Safe reinforcement learning (RL) with assured satisfaction of hard state constraints during training has recently received a lot of attention. Safety filters, e.g., based on control barrier functions (CBFs), provide a promising way for safe RL via modifying the unsafe actions of an RL agent on the fly. Existing safety filter-based approaches typically involve learning of uncertain dynamics and quantifying the learned model error, which leads to conservative filters before a large amount of data is collected to learn a good model, thereby preventing efficient exploration. This paper presents a method for safe and efficient model-free RL using disturbance observers (DOBs) and control barrier functions (CBFs). Unlike most existing safe RL methods that deal with hard state constraints, our method does not involve model learning, and leverages DOBs to accurately estimate the pointwise value of the uncertainty, which is then incorporated into a robust CBF condition to generate safe actions. The DOB-based CBF can be used as a safety filter with any model-free RL algorithms by minimally modifying the actions of an RL agent whenever necessary to ensure safety throughout the learning process. Simulation results on a unicycle and a 2D quadrotor demonstrate that the proposed method outperforms a state-of-the-art safe RL algorithm using CBFs and Gaussian processes-based model learning, in terms of safety violation rate, and sample and computational efficiency.
translated by 谷歌翻译
强化学习(RL)是一种有希望的方法,对现实世界的应用程序取得有限,因为确保安全探索或促进充分利用是控制具有未知模型和测量不确定性的机器人系统的挑战。这种学习问题对于连续空间(状态空间和动作空间)的复杂任务变得更加棘手。在本文中,我们提出了一种由几个方面组成的基于学习的控制框架:(1)线性时间逻辑(LTL)被利用,以便于可以通过无限视野的复杂任务转换为新颖的自动化结构; (2)我们为RL-Agent提出了一种创新的奖励计划,正式保证,使全球最佳政策最大化满足LTL规范的概率; (3)基于奖励塑造技术,我们开发了利用自动机构结构的好处进行了模块化的政策梯度架构来分解整体任务,并促进学习控制器的性能; (4)通过纳入高斯过程(GPS)来估计不确定的动态系统,我们使用指数控制屏障功能(ECBF)综合基于模型的保障措施来解决高阶相对度的问题。此外,我们利用LTL自动化和ECBF的性质来构建引导过程,以进一步提高勘探效率。最后,我们通过多个机器人环境展示了框架的有效性。我们展示了这种基于ECBF的模块化深RL算法在训练期间实现了近乎完美的成功率和保护安全性,并且在训练期间具有很高的概率信心。
translated by 谷歌翻译
在最近的文献中,学习方法与模型预测控制(MPC)的结合吸引了大量关注。这种组合的希望是减少MPC方案对准确模型的依赖,并利用快速开发的机器学习和强化学习工具,以利用许多系统可用的数据量。特别是,增强学习和MPC的结合已被认为是一种可行且理论上合理的方法,以引入可解释的,安全和稳定的政策,以实现强化学习。但是,一种正式的理论详细介绍了如何通过学习工具提供的参数更新来维持基于MPC的策略的安全性和稳定性。本文解决了这一差距。该理论是针对通用的强大MPC案例开发的,并在基于强大的管线MPC情况的模拟中应用,在该情况下,该理论在实践中很容易部署。本文着重于增强学习作为学习工具,但它适用于任何在线更新MPC参数的学习方法。
translated by 谷歌翻译
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
translated by 谷歌翻译
本文开发了一种基于模型的强化学习(MBR)框架,用于在线在线学习无限范围最佳控制问题的价值函数,同时遵循表示为控制屏障功能(CBFS)的安全约束。我们的方法是通过开发一种新型的CBFS,称为Lyapunov样CBF(LCBF),其保留CBFS的有益特性,以开发最微创的安全控制政策,同时也具有阳性半自动等所需的Lyapunov样品质 - 义法。我们展示这些LCBFS如何用于增强基于学习的控制策略,以保证安全性,然后利用这种方法在MBRL设置中开发安全探索框架。我们表明,我们的开发方法可以通过各种数值示例来处理比较法的更通用的安全限制。
translated by 谷歌翻译
稳定性认证并确定安全稳定的初始集是确保动态系统的操作安全性,稳定性和鲁棒性的两个重要问题。随着机器学习工具的出现,需要针对反馈循环中具有机器学习组件的系统来解决这些问题。为了开发一种关于神经网络(NN)控制的非线性系统的稳定性和稳定性的一般理论,提出了基于Lyapunov的稳定性证书,并进一步用于设计用于NN Controller和NN控制器和最大LIPSCHITZ绑定的。也是给定的安全操作域内内部相应的最大诱因(ROA)。为了计算这种强大的稳定NN控制器,它也最大化了系统的长期实用程序,提出了稳定性保证训练(SGT)算法。提出的框架的有效性通过说明性示例得到了验证。
translated by 谷歌翻译
最近,基于障碍函数的安全强化学习(RL)与actor-批评结构用于连续控制任务的批评结构已经受到越来越受到关注。使用安全性和收敛保证,学习近最优控制政策仍然挑战。此外,很少有效地解决了在时变的安全约束下的安全RL算法设计。本文提出了一种基于模型的安全RL算法,用于具有时变状态和控制约束的非线性系统的最佳控制。在拟议的方法中,我们构建了一种新的基于障碍的控制策略结构,可以保证控制安全性。提出了一种多步骤策略评估机制,以预测策略在时变的安全限制下的安全风险,并指导政策安全更新。证明了稳定性和稳健性的理论结果。此外,分析了演员 - 评论家学习算法的收敛。所提出的算法的性能优于模拟安全健身房环境中的几种最先进的RL算法。此外,该方法适用于两个现实世界智能车辆的综合路径和碰撞避免问题。差动驱动车辆和Ackermann-Drive分别用于验证离线部署性能和在线学习性能。我们的方法在实验中显示了令人印象深刻的SIM-to-Real的转移能力和令人满意的在线控制性能。
translated by 谷歌翻译
强化学习(RL)控制器在控制社区中产生了兴奋。 RL控制器相对于现有方法的主要优点是它们能够优化不确定的系统,独立于明确假设过程不确定性。最近对工程应用的关注是针对安全RL控制器的发展。以前的作品已经提出了通过从随机模型预测控制领域的限制收紧来解释约束满足的方法。在这里,我们将这些方法扩展到植物模型不匹配。具体地,我们提出了一种利用离线仿真模型的高斯过程的数据驱动方法,并使用相关的后部不确定预测来解释联合机会限制和植物模型不匹配。该方法通过案例研究反对非线性模型预测控制的基准测试。结果证明了方法理解过程不确定性的能力,即使在植物模型错配的情况下也能满足联合机会限制。
translated by 谷歌翻译
现实世界加固学习(RL)问题通常要求代理通过遵守一套设计的约束来安全地安全。通过在模型预测控制(MPC)中,通过耦合具有连续动作的线性设置中的修改策略梯度框架来解决安全RL的挑战。指南通过将安全要求嵌入安全要求作为MPC配方中的机会限制来强制执行系统的安全操作。政策梯度培训步骤然后包括安全罚款,该安全罚款列举了基本政策能够安全行事。我们从理论上显示了这种惩罚允许在训练后删除安全指南,并用模拟器四轮机器使用实验说明我们的方法。
translated by 谷歌翻译
值得信赖的强化学习算法应有能力解决挑战性的现实问题,包括{Robustly}处理不确定性,满足{安全}的限制以避免灾难性的失败,以及在部署过程中{prencepentiming}以避免灾难性的失败}。这项研究旨在概述这些可信赖的强化学习的主要观点,即考虑其在鲁棒性,安全性和概括性上的内在脆弱性。特别是,我们给出严格的表述,对相应的方法进行分类,并讨论每个观点的基准。此外,我们提供了一个前景部分,以刺激有希望的未来方向,并简要讨论考虑人类反馈的外部漏洞。我们希望这项调查可以在统一的框架中将单独的研究汇合在一起,并促进强化学习的可信度。
translated by 谷歌翻译
机器人等系统的安全操作要求它们计划和执行受安全约束的轨迹。当这些系统受到动态的不确定性的影响时,确保不违反限制是具有挑战性的。本文提出了基于受约束差分动态规划(DDP)的附加不确定性和非线性安全约束的安全轨迹,安全轨迹优化和控制方法。在其运动中的机器人的安全性被制定为机会限制了用户所选择的约束满足的概率。通过约束收紧将机会约束转换为DDP制剂中的确定性。为了避免在约束期间的过保守,从受约束的DDP导出的反馈策略的线性控制增益用于预测中的闭环不确定性传播的近似。所提出的算法在三种不同的机器人动态上进行了经验评估,模拟中具有高达12度的自由度。使用物理硬件实现对方法的计算可行性和适用性进行了说明。
translated by 谷歌翻译
强化学习(RL)文献的最新进展使机器人主义者能够在模拟环境中自动训练复杂的政策。但是,由于这些方法的样本复杂性差,使用现实世界数据解决强化学习问题仍然是一个具有挑战性的问题。本文介绍了一种新颖的成本整形方法,旨在减少学习稳定控制器所需的样品数量。该方法添加了一个涉及控制Lyapunov功能(CLF)的术语 - 基于模型的控制文献的“能量样”功能 - 到典型的成本配方。理论结果表明,新的成本会导致使用较小的折现因子时稳定控制器,这是众所周知的,以降低样品复杂性。此外,通过确保即使是高度亚最佳的策略也可以稳定系统,添加CLF术语“鲁棒化”搜索稳定控制器。我们通过两个硬件示例演示了我们的方法,在其中我们学习了一个cartpole的稳定控制器和仅使用几秒钟和几分钟的微调数据的A1稳定控制器。
translated by 谷歌翻译
我们开发了一种新型的可区分预测控制(DPC),并根据控制屏障功能确保安全性和鲁棒性保证。DPC是一种基于学习的方法,用于获得近似解决方案,以解决明确的模型预测控制(MPC)问题。在DPC中,通过自动分化MPC问题获得的直接策略梯度,通过直接策略梯度进行了脱机优化的预测控制策略。所提出的方法利用了一种新形式的采样数据屏障功能,以在DPC设置中执行离线和在线安全要求,同时仅中断安全集合边界附近的基于神经网络的控制器。在模拟中证明了拟议方法的有效性。
translated by 谷歌翻译
在强化学习(RL)的试验和错误机制中,我们期望学习安全的政策时出现臭名昭着的矛盾:如何学习没有足够数据和关于危险区域的先前模型的安全政策?现有方法主要使用危险行动的后期惩罚,这意味着代理人不会受到惩罚,直到体验危险。这一事实导致代理商也无法在收敛之后学习零违规政策。否则,它不会收到任何惩罚并失去有关危险的知识。在本文中,我们提出了安全设置的演员 - 评论家(SSAC)算法,它使用面向安全的能量函数或安全索引限制了策略更新。安全索引旨在迅速增加,以便潜在的危险行动,这使我们能够在动作空间上找到安全设置,或控制安全集。因此,我们可以在服用它们之前识别危险行为,并在收敛后进一步获得零限制违规政策。我们声称我们可以以类似于学习价值函数的无模型方式学习能量函数。通过使用作为约束目标的能量函数转变,我们制定了受约束的RL问题。我们证明我们基于拉格朗日的解决方案确保学习的政策将收敛到某些假设下的约束优化。在复杂的模拟环境和硬件循环(HIL)实验中评估了所提出的算法,具有来自自动车辆的真实控制器。实验结果表明,所有环境中的融合政策达到了零限制违规和基于模型的基线的相当性能。
translated by 谷歌翻译
强化学习(RL)和连续的非线性控制已成功部署在复杂的顺序决策任务的多个领域中。但是,鉴于学习过程的探索性质和模型不确定性的存在,由于缺乏安全保证,将它们应用于安全至关重要的控制任务是一项挑战。另一方面,尽管将控制理论方法与学习算法相结合,但在安全RL应用中显示了希望,但安全数据收集过程的样本效率尚未得到很好的解决。在本文中,我们提出了一个\ emph {可证明的}示例有效的情节安全学习框架,用于在线控制任务,以利用未知的非线性动力学系统来利用安全的探索和剥削。特别是,框架1)在随机设置中扩展控制屏障功能(CBF),以在模型学习过程中实现可证明的高概率安全性,2)整合基于乐观的探索策略,以有效地将安全探索过程与学习的动态有效地指导安全探索过程对于\ emph {接近最佳}控制性能。我们对与理论保证的最佳控制器和概率安全性的偶发性遗憾进行了正式分析。提供了仿真结果以证明所提出算法的有效性和效率。
translated by 谷歌翻译
在对关键安全环境的强化学习中,通常希望代理在所有时间点(包括培训期间)服从安全性限制。我们提出了一种称为Spice的新型神经符号方法,以解决这个安全的探索问题。与现有工具相比,Spice使用基于符号最弱的先决条件的在线屏蔽层获得更精确的安全性分析,而不会不适当地影响培训过程。我们在连续控制基准的套件上评估了该方法,并表明它可以达到与现有的安全学习技术相当的性能,同时遭受较少的安全性违规行为。此外,我们提出的理论结果表明,在合理假设下,香料会收敛到最佳安全政策。
translated by 谷歌翻译