在最近的文献中,学习方法与模型预测控制(MPC)的结合吸引了大量关注。这种组合的希望是减少MPC方案对准确模型的依赖,并利用快速开发的机器学习和强化学习工具,以利用许多系统可用的数据量。特别是,增强学习和MPC的结合已被认为是一种可行且理论上合理的方法,以引入可解释的,安全和稳定的政策,以实现强化学习。但是,一种正式的理论详细介绍了如何通过学习工具提供的参数更新来维持基于MPC的策略的安全性和稳定性。本文解决了这一差距。该理论是针对通用的强大MPC案例开发的,并在基于强大的管线MPC情况的模拟中应用,在该情况下,该理论在实践中很容易部署。本文着重于增强学习作为学习工具,但它适用于任何在线更新MPC参数的学习方法。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
translated by 谷歌翻译
在本文中,我们研究了加强学习问题的安全政策的学习。这是,我们的目标是控制我们不知道过渡概率的马尔可夫决策过程(MDP),但我们通过经验访问样品轨迹。我们将安全性定义为在操作时间内具有高概率的期望安全集中的代理。因此,我们考虑受限制的MDP,其中限制是概率。由于没有直接的方式来优化关于加强学习框架中的概率约束的政策,因此我们提出了对问题的遍历松弛。拟议的放松的优点是三倍。 (i)安全保障在集界任务的情况下保持,并且它们保持在一个给定的时间范围内,以继续进行任务。 (ii)如果政策的参数化足够丰富,则约束优化问题尽管其非凸起具有任意小的二元间隙。 (iii)可以使用标准策略梯度结果和随机近似工具容易地计算与安全学习问题相关的拉格朗日的梯度。利用这些优势,我们建立了原始双算法能够找到安全和最佳的政策。我们在连续域中的导航任务中测试所提出的方法。数值结果表明,我们的算法能够将策略动态调整到环境和所需的安全水平。
translated by 谷歌翻译
在将强化学习(RL)部署到现实世界系统中时,确保安全是一个至关重要的挑战。我们开发了基于置信的安全过滤器,这是一种基于概率动力学模型的标准RL技术,通过标准RL技术学到的名义策略来证明国家安全限制的控制理论方法。我们的方法基于对成本功能的国家约束的重新重新制定,从而将安全验证减少到标准RL任务。通过利用幻觉输入的概念,我们扩展了此公式,以确定对具有很高可能性的未知系统安全的“备份”策略。最后,在推出备用政策期间的每一个时间步骤中,标称政策的调整最少,以便以后可以保证安全恢复。我们提供正式的安全保证,并从经验上证明我们方法的有效性。
translated by 谷歌翻译
本文介绍了模型预测控制(MPC)的稳定分析工具,其中通过在有限的视野上优化成本函数来生成控制动作。 MPC的稳定性分析有限,但没有终端重量是一个众所周知的具有挑战性的问题。我们根据与阶段成本相关的辅助一步优化定义了一个新的值函数,即最佳的一步值函数(OSVF)。结果表明,如果OSVF为(局部)控制Lyapunov函数(CLF),则可以使有限的Horizo​​n MPC渐近稳定。更具体地说,通过利用OSFV的CLF属性来构建承包终端集,提出了一种新的稳定MPC算法(CMPC)。我们表明,在OSVF为CLF的情况下,CMPC是可行的,并保证稳定性。讨论了检查此条件和最大末端集的估计。提供了数值示例,以证明所提出的稳定性条件和相应的CMPC算法的有效性。
translated by 谷歌翻译
在训练数据的分布中评估时,学到的模型和政策可以有效地概括,但可以在分布输入输入的情况下产生不可预测且错误的输出。为了避免在部署基于学习的控制算法时分配变化,我们寻求一种机制将代理商限制为类似于受过训练的国家和行动的机制。在控制理论中,Lyapunov稳定性和控制不变的集合使我们能够保证稳定系统周围系统的控制器,而在机器学习中,密度模型使我们能够估算培训数据分布。我们可以将这两个概念结合起来,产生基于学习的控制算法,这些算法仅使用分配动作将系统限制为分布状态?在这项工作中,我们建议通过结合Lyapunov稳定性和密度估计的概念来做到这一点,引入Lyapunov密度模型:控制Lyapunov函数和密度模型的概括,这些函数和密度模型可以保证代理商在其整个轨迹上保持分布的能力。
translated by 谷歌翻译
强化学习(RL)文献的最新进展使机器人主义者能够在模拟环境中自动训练复杂的政策。但是,由于这些方法的样本复杂性差,使用现实世界数据解决强化学习问题仍然是一个具有挑战性的问题。本文介绍了一种新颖的成本整形方法,旨在减少学习稳定控制器所需的样品数量。该方法添加了一个涉及控制Lyapunov功能(CLF)的术语 - 基于模型的控制文献的“能量样”功能 - 到典型的成本配方。理论结果表明,新的成本会导致使用较小的折现因子时稳定控制器,这是众所周知的,以降低样品复杂性。此外,通过确保即使是高度亚最佳的策略也可以稳定系统,添加CLF术语“鲁棒化”搜索稳定控制器。我们通过两个硬件示例演示了我们的方法,在其中我们学习了一个cartpole的稳定控制器和仅使用几秒钟和几分钟的微调数据的A1稳定控制器。
translated by 谷歌翻译
强化学习通常与奖励最大化(或成本量化)代理的培训相关,换句话说是控制者。它可以使用先验或在线收集的系统数据以无模型或基于模型的方式应用,以培训涉及的参数体系结构。通常,除非通过学习限制或量身定制的培训规则采取特殊措施,否则在线增强学习不能保证闭环稳定性。特别有希望的是通过“经典”控制方法进行增强学习的混合体。在这项工作中,我们建议一种在纯粹的在线学习环境中,即没有离线培训的情况下,可以保证系统控制器闭环的实际稳定性。此外,我们仅假设对系统模型的部分知识。为了达到要求的结果,我们采用经典自适应控制技术。总体控制方案的实施是在数字,采样设置中明确提供的。也就是说,控制器接收系统的状态,并在离散的时间(尤其是等距的时刻)中计算控制动作。该方法在自适应牵引力控制和巡航控制中进行了测试,事实证明,该方法可显着降低成本。
translated by 谷歌翻译
策略梯度方法适用于复杂的,不理解的,通过对参数化的策略进行随机梯度下降来控制问题。不幸的是,即使对于可以通过标准动态编程技术解决的简单控制问题,策略梯度算法也会面临非凸优化问题,并且被广泛理解为仅收敛到固定点。这项工作确定了结构属性 - 通过几个经典控制问题共享 - 确保策略梯度目标函数尽管是非凸面,但没有次优的固定点。当这些条件得到加强时,该目标满足了产生收敛速率的Polyak-lojasiewicz(梯度优势)条件。当其中一些条件放松时,我们还可以在任何固定点的最佳差距上提供界限。
translated by 谷歌翻译
Reinforcement learning is a powerful paradigm for learning optimal policies from experimental data. However, to find optimal policies, most reinforcement learning algorithms explore all possible actions, which may be harmful for real-world systems. As a consequence, learning algorithms are rarely applied on safety-critical systems in the real world. In this paper, we present a learning algorithm that explicitly considers safety, defined in terms of stability guarantees. Specifically, we extend control-theoretic results on Lyapunov stability verification and show how to use statistical models of the dynamics to obtain high-performance control policies with provable stability certificates. Moreover, under additional regularity assumptions in terms of a Gaussian process prior, we prove that one can effectively and safely collect data in order to learn about the dynamics and thus both improve control performance and expand the safe region of the state space. In our experiments, we show how the resulting algorithm can safely optimize a neural network policy on a simulated inverted pendulum, without the pendulum ever falling down.
translated by 谷歌翻译
In many sequential decision-making problems one is interested in minimizing an expected cumulative cost while taking into account risk, i.e., increased awareness of events of small probability and high consequences. Accordingly, the objective of this paper is to present efficient reinforcement learning algorithms for risk-constrained Markov decision processes (MDPs), where risk is represented via a chance constraint or a constraint on the conditional value-at-risk (CVaR) of the cumulative cost. We collectively refer to such problems as percentile risk-constrained MDPs. Specifically, we first derive a formula for computing the gradient of the Lagrangian function for percentile riskconstrained MDPs. Then, we devise policy gradient and actor-critic algorithms that (1) estimate such gradient, (2) update the policy in the descent direction, and (3) update the Lagrange multiplier in the ascent direction. For these algorithms we prove convergence to locally optimal policies. Finally, we demonstrate the effectiveness of our algorithms in an optimal stopping problem and an online marketing application.
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
安全限制和最优性很重要,但有时控制器有时相互冲突的标准。虽然这些标准通常与不同的工具单独解决以维持正式保障,但在惩罚失败时,加强学习的常见做法是惩罚,以惩罚为单纯的启发式。我们严格地检查了安全性和最优性与惩罚的关系,并对安全价值函数进行了足够的条件:对给定任务的最佳价值函数,并强制执行安全约束。我们通过强大的二元性证明,揭示这种关系的结构,表明始终存在一个有限的惩罚,引起安全值功能。这种惩罚并不是独特的,但大不束缚:更大的惩罚不会伤害最优性。虽然通常无法计算最低所需的惩罚,但我们揭示了清晰的惩罚,奖励,折扣因素和动态互动的结构。这种洞察力建议实用,理论引导的启发式设计奖励功能,用于控制安全性很重要的控制问题。
translated by 谷歌翻译
在钢筋学习(RL)中,代理必须探索最初未知的环境,以便学习期望的行为。当RL代理部署在现实世界环境中时,安全性是主要关注的。受约束的马尔可夫决策过程(CMDPS)可以提供长期的安全约束;但是,该代理人可能会违反探索其环境的制约因素。本文提出了一种称为显式探索,漏洞探索或转义($ e ^ {4} $)的基于模型的RL算法,它将显式探索或利用($ e ^ {3} $)算法扩展到强大的CMDP设置。 $ e ^ 4 $明确地分离开发,探索和逃脱CMDP,允许针对已知状态的政策改进的有针对性的政策,发现未知状态,以及安全返回到已知状态。 $ e ^ 4 $强制优化了从一组CMDP模型的最坏情况CMDP上的这些策略,该模型符合部署环境的经验观察。理论结果表明,在整个学习过程中满足安全限制的情况下,在多项式时间中找到近最优的约束政策。我们讨论了稳健约束的离线优化算法,以及如何基于经验推理和先验知识来结合未知状态过渡动态的不确定性。
translated by 谷歌翻译
现实世界加固学习(RL)问题通常要求代理通过遵守一套设计的约束来安全地安全。通过在模型预测控制(MPC)中,通过耦合具有连续动作的线性设置中的修改策略梯度框架来解决安全RL的挑战。指南通过将安全要求嵌入安全要求作为MPC配方中的机会限制来强制执行系统的安全操作。政策梯度培训步骤然后包括安全罚款,该安全罚款列举了基本政策能够安全行事。我们从理论上显示了这种惩罚允许在训练后删除安全指南,并用模拟器四轮机器使用实验说明我们的方法。
translated by 谷歌翻译
本文开发了一种基于模型的强化学习(MBR)框架,用于在线在线学习无限范围最佳控制问题的价值函数,同时遵循表示为控制屏障功能(CBFS)的安全约束。我们的方法是通过开发一种新型的CBFS,称为Lyapunov样CBF(LCBF),其保留CBFS的有益特性,以开发最微创的安全控制政策,同时也具有阳性半自动等所需的Lyapunov样品质 - 义法。我们展示这些LCBFS如何用于增强基于学习的控制策略,以保证安全性,然后利用这种方法在MBRL设置中开发安全探索框架。我们表明,我们的开发方法可以通过各种数值示例来处理比较法的更通用的安全限制。
translated by 谷歌翻译
我们试图将广泛的神经网络的非线性建模功能与模型预测控制(MPC)的安全保证相结合,并在严格的在线计算框架中。可以使用Koopman运算符捕获所考虑的网络类,并将其集成到基于Koopman的跟踪MPC(KTMPC)中,以用于非线性系统以跟踪分段常数引用。原始非线性动力学与其训练有素的Koopman线性模型之间模型不匹配的影响是通过在建议的跟踪MPC策略中使用约束拧紧方法来处理的。通过选择两个Lyapunov候选功能,我们证明解决方案是可行的,并且在存在有限的建模错误的情况下,在线和离线最佳可触发稳定输出均具有稳定的输入到状态。最后,我们展示了一个数值示例的结果以及自动地面车辆在跟踪给定参考文献中的应用。
translated by 谷歌翻译
政策梯度(PG)算法是备受期待的强化学习对现实世界控制任务(例如机器人技术)的最佳候选人之一。但是,每当必须在物理系统上执行学习过程本身或涉及任何形式的人类计算机相互作用时,这些方法的反复试验性质就会提出安全问题。在本文中,我们解决了一种特定的安全公式,其中目标和危险都以标量奖励信号进行编码,并且学习代理被限制为从不恶化其性能,以衡量为预期的奖励总和。通过从随机优化的角度研究仅行为者的政策梯度,我们为广泛的参数政策建立了改进保证,从而将现有结果推广到高斯政策上。这与策略梯度估计器的差异的新型上限一起,使我们能够识别出具有很高概率的单调改进的元参数计划。两个关键的元参数是参数更新的步长和梯度估计的批处理大小。通过对这些元参数的联合自适应选择,我们获得了具有单调改进保证的政策梯度算法。
translated by 谷歌翻译
收缩理论是一种分析工具,用于研究以均匀的正面矩阵定义的收缩度量下的非自主(即,时变)非线性系统的差动动力学,其存在导致增量指数的必要和充分表征多种溶液轨迹彼此相互稳定性的稳定性。通过使用平方差分长度作为Lyapunov样功能,其非线性稳定性分析向下沸腾以找到满足以表达为线性矩阵不等式的稳定条件的合适的收缩度量,表明可以在众所周知的线性系统之间绘制许多平行线非线性系统理论与收缩理论。此外,收缩理论利用了与比较引理结合使用的指数稳定性的优越稳健性。这产生了基于神经网络的控制和估计方案的急需安全性和稳定性保证,而不借助使用均匀渐近稳定性的更涉及的输入到状态稳定性方法。这种独特的特征允许通过凸优化来系统构造收缩度量,从而获得了由于扰动和学习误差而在外部扰动的时变的目标轨迹和解决方案轨迹之间的距离上的明确指数界限。因此,本文的目的是介绍了收缩理论的课程概述及其在确定性和随机系统的非线性稳定性分析中的优点,重点导出了各种基于学习和数据驱动的自动控制方法的正式鲁棒性和稳定性保证。特别是,我们提供了使用深神经网络寻找收缩指标和相关控制和估计法的技术的详细审查。
translated by 谷歌翻译