稳定性认证并确定安全稳定的初始集是确保动态系统的操作安全性,稳定性和鲁棒性的两个重要问题。随着机器学习工具的出现,需要针对反馈循环中具有机器学习组件的系统来解决这些问题。为了开发一种关于神经网络(NN)控制的非线性系统的稳定性和稳定性的一般理论,提出了基于Lyapunov的稳定性证书,并进一步用于设计用于NN Controller和NN控制器和最大LIPSCHITZ绑定的。也是给定的安全操作域内内部相应的最大诱因(ROA)。为了计算这种强大的稳定NN控制器,它也最大化了系统的长期实用程序,提出了稳定性保证训练(SGT)算法。提出的框架的有效性通过说明性示例得到了验证。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
本文开发了一种基于模型的强化学习(MBR)框架,用于在线在线学习无限范围最佳控制问题的价值函数,同时遵循表示为控制屏障功能(CBFS)的安全约束。我们的方法是通过开发一种新型的CBFS,称为Lyapunov样CBF(LCBF),其保留CBFS的有益特性,以开发最微创的安全控制政策,同时也具有阳性半自动等所需的Lyapunov样品质 - 义法。我们展示这些LCBFS如何用于增强基于学习的控制策略,以保证安全性,然后利用这种方法在MBRL设置中开发安全探索框架。我们表明,我们的开发方法可以通过各种数值示例来处理比较法的更通用的安全限制。
translated by 谷歌翻译
强化学习通常与奖励最大化(或成本量化)代理的培训相关,换句话说是控制者。它可以使用先验或在线收集的系统数据以无模型或基于模型的方式应用,以培训涉及的参数体系结构。通常,除非通过学习限制或量身定制的培训规则采取特殊措施,否则在线增强学习不能保证闭环稳定性。特别有希望的是通过“经典”控制方法进行增强学习的混合体。在这项工作中,我们建议一种在纯粹的在线学习环境中,即没有离线培训的情况下,可以保证系统控制器闭环的实际稳定性。此外,我们仅假设对系统模型的部分知识。为了达到要求的结果,我们采用经典自适应控制技术。总体控制方案的实施是在数字,采样设置中明确提供的。也就是说,控制器接收系统的状态,并在离散的时间(尤其是等距的时刻)中计算控制动作。该方法在自适应牵引力控制和巡航控制中进行了测试,事实证明,该方法可显着降低成本。
translated by 谷歌翻译
影响模型预测控制(MPC)策略的神经网络(NN)近似的常见问题是缺乏分析工具来评估基于NN的控制器的动作下闭环系统的稳定性。我们介绍了一种通用过程来量化这种控制器的性能,或者设计具有整流的线性单元(Relus)的最小复杂性NN,其保留给定MPC方案的理想性质。通过量化基于NN和基于MPC的状态到输入映射之间的近似误差,我们首先建立适当的条件,涉及两个关键量,最坏情况误差和嘴唇截止恒定,保证闭环系统的稳定性。然后,我们开发了一个离线,混合整数的基于优化的方法,以确切地计算这些数量。这些技术共同提供足以认证MPC控制法的基于Relu的近似的稳定性和性能的条件。
translated by 谷歌翻译
收缩理论是一种分析工具,用于研究以均匀的正面矩阵定义的收缩度量下的非自主(即,时变)非线性系统的差动动力学,其存在导致增量指数的必要和充分表征多种溶液轨迹彼此相互稳定性的稳定性。通过使用平方差分长度作为Lyapunov样功能,其非线性稳定性分析向下沸腾以找到满足以表达为线性矩阵不等式的稳定条件的合适的收缩度量,表明可以在众所周知的线性系统之间绘制许多平行线非线性系统理论与收缩理论。此外,收缩理论利用了与比较引理结合使用的指数稳定性的优越稳健性。这产生了基于神经网络的控制和估计方案的急需安全性和稳定性保证,而不借助使用均匀渐近稳定性的更涉及的输入到状态稳定性方法。这种独特的特征允许通过凸优化来系统构造收缩度量,从而获得了由于扰动和学习误差而在外部扰动的时变的目标轨迹和解决方案轨迹之间的距离上的明确指数界限。因此,本文的目的是介绍了收缩理论的课程概述及其在确定性和随机系统的非线性稳定性分析中的优点,重点导出了各种基于学习和数据驱动的自动控制方法的正式鲁棒性和稳定性保证。特别是,我们提供了使用深神经网络寻找收缩指标和相关控制和估计法的技术的详细审查。
translated by 谷歌翻译
我们提出了一个框架,用于稳定验证混合智能线性编程(MILP)代表控制策略。该框架比较了固定的候选策略,该策略承认有效的参数化,可以以低计算成本进行评估,与固定基线策略进行评估,固定基线策略已知稳定但评估昂贵。我们根据基线策略的最坏情况近似错误为候选策略的闭环稳定性提供了足够的条件,我们表明可以通过求解混合构成二次计划(MIQP)来检查这些条件。 。此外,我们证明可以通过求解MILP来计算候选策略的稳定区域的外部近似。所提出的框架足以容纳广泛的候选策略,包括Relu神经网络(NNS),参数二次程序的最佳解决方案图以及模型预测性控制(MPC)策略。我们还根据提议的框架在Python中提供了一个开源工具箱,该工具可以轻松验证自定义NN架构和MPC公式。我们在DC-DC电源转换器案例研究的背景下展示了框架的灵活性和可靠性,并研究了计算复杂性。
translated by 谷歌翻译
我们提出了基于复发均衡网络的非线性动态控制器的参数化,这是复发性神经网络的概括。我们对控制器保证具有部分观察到的动态系统的指数稳定性的参数化受到限制。最后,我们提出了一种使用投影策略梯度方法合成该控制器的方法,以最大程度地利用任意结构来奖励功能。投影步骤涉及凸优化问题的解决方案。我们通过模拟控制非线性植物(包括用神经网络建模的植物)演示了提出的方法。
translated by 谷歌翻译
直接政策搜索作为现代强化学习(RL)的工作人员之一,其在连续控制任务中的应用最近引起了不断的关注。在这项工作中,我们研究了用于学习线性风险敏感和鲁棒控制器的政策梯度(PG)方法的收敛理论。特别地,我们开发PG方法,可以通过采样系统轨迹以无衍生方式实现,并建立全球收敛性和样本复杂性,这导致风险敏感和强大控制中的两个基本环境的解决方案:有限地平线线性指数二次高斯,以及有限地平线线性二次干扰衰减问题。作为副产品,我们的结果还为解决零和线性二次动态游戏的PG方法的全局融合提供了第一种样本复杂性,这是一种非透明的极限优化问题,该问题用作多功能钢筋中的基线设置学习(Marl)与连续空间。我们的算法的一个特征是在学习阶段,保留了一定程度的控制器的鲁棒性/风险敏感性,因此我们被称为隐式正则化属性,并且是安全关键控制系统的基本要求。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
本文介绍了在最近开发的神经网络架构上的不确定系统构建的非线性控制器的参数化,称为经常性平衡网络(REN)以及YOULA参数化的非线性版本。拟议的框架具有“内置”保证稳定性,即搜索空间中的所有政策导致承包(全球指数稳定的)闭环系统。因此,它需要对成本函数的选择的非常温和的假设,并且可以推广稳定性属性以看不见的数据。这种方法的另一个有用特征是在没有任何约束的情况下直接参数化的策略,这简化了基于无约束优化的广泛的政策学习方法学习(例如随机梯度下降)。我们说明了具有各种模拟示例的所提出的方法。
translated by 谷歌翻译
在本文中,我们提出了一个新型的非线性观察者,称为神经观察者,以通过将神经网络(NN)引入观察者的设计,以实现线性时间传播(LTI)系统的观察任务和不确定的非线性系统。通过探索NN代表向NN映射矢量的方法,我们从LTI和不确定的非线性系统中得出了稳定性分析(例如,指数收敛速率),这些系统仅使用线性矩阵不平等(LMIS)为解决观察问题铺平了道路。值得注意的是,为不确定系统设计的神经观察者基于主动扰动拒绝控制(ADRC)的意识形态,该思想可以实时测量不确定性。 LMI结果也很重要,因为我们揭示了LMI溶液存在系统矩阵的可观察性和可控性。最后,我们在三个模拟案例上验证神经观察者的可用性,包括X-29A飞机模型,非线性摆和四轮转向车辆。
translated by 谷歌翻译
强化学习(RL)是一种有希望的方法,对现实世界的应用程序取得有限,因为确保安全探索或促进充分利用是控制具有未知模型和测量不确定性的机器人系统的挑战。这种学习问题对于连续空间(状态空间和动作空间)的复杂任务变得更加棘手。在本文中,我们提出了一种由几个方面组成的基于学习的控制框架:(1)线性时间逻辑(LTL)被利用,以便于可以通过无限视野的复杂任务转换为新颖的自动化结构; (2)我们为RL-Agent提出了一种创新的奖励计划,正式保证,使全球最佳政策最大化满足LTL规范的概率; (3)基于奖励塑造技术,我们开发了利用自动机构结构的好处进行了模块化的政策梯度架构来分解整体任务,并促进学习控制器的性能; (4)通过纳入高斯过程(GPS)来估计不确定的动态系统,我们使用指数控制屏障功能(ECBF)综合基于模型的保障措施来解决高阶相对度的问题。此外,我们利用LTL自动化和ECBF的性质来构建引导过程,以进一步提高勘探效率。最后,我们通过多个机器人环境展示了框架的有效性。我们展示了这种基于ECBF的模块化深RL算法在训练期间实现了近乎完美的成功率和保护安全性,并且在训练期间具有很高的概率信心。
translated by 谷歌翻译
行动调速器是标称控制循环的附加方案,该方案监视和调整控制措施以强制执行以端加状态和控制约束表示的安全规范。在本文中,我们介绍了系统的强大动作调速器(RAG),该动力学可以使用具有参数和加法不确定性的离散时间分段仿射(PWA)模型来表示,并受到非convex约束。我们开发了抹布的理论属性和计算方法。之后,我们介绍了抹布来实现安全加强学习(RL),即确保在线RL勘探和探索过程中的历史约束满意度。该开发使控制策略的安全实时演变和适应操作环境和系统参数的变化(由于老化,损坏等)。我们通过考虑将其应用于质量 - 弹簧式抑制系统的软地面问题来说明抹布在约束执法和安全RL中的有效性。
translated by 谷歌翻译
用于未知非线性系统的学习和合成稳定控制器是现实世界和工业应用的具有挑战性问题。 Koopman操作员理论允许通过直线系统和非线性控制系统的镜头通过线性系统和非线性控制系统的镜头来分析非线性系统。这些方法的关键思想,在于将非线性系统的坐标转换为Koopman可观察,这是允许原始系统(控制系统)作为更高尺寸线性(双线性控制)系统的坐标。然而,对于非线性控制系统,通过应用基于Koopman操作员的学习方法获得的双线性控制模型不一定是稳定的,因此,不保证稳定反馈控制的存在,这对于许多真实世界的应用来说是至关重要的。同时识别基于这些可稳定的Koopman的双线性控制系统以及相关的Koopman可观察到仍然是一个开放的问题。在本文中,我们提出了一个框架,以通过同时学习为基于Koopman的底层未知的非线性控制系统以及基于Koopman的控制Lyapunov函数(CLF)来识别和构造这些可稳定的双线性模型及其相关的可观察能力。双线性模型使用学习者和伪空。我们提出的方法从而为非线性控制系统具有未知动态的非线性控制系统提供了可证明的全球渐近稳定性的保证。提供了数值模拟,以验证我们提出的稳定反馈控制器为未知的非线性系统的效力。
translated by 谷歌翻译
由于它们的灵活性和富有效力,神经网络控制器在控制任务中变得流行。稳定性是安全关键动态系统的关键性质,而在许多情况下,部分观察到的系统的稳定化需要控制器保留和处理过去的长期记忆。我们将重要类别的经常性神经网络(RNN)视为非线性不确定部分观察系统的动态控制器,并基于积分二次约束,S-LEMMA和顺序凸化来推导凸稳定性条件。为了确保学习和控制过程中的稳定性,我们提出了一种预测的政策梯度方法,可迭代地强制执行关于系统动态的温和附加信息的重新制定空间中的稳定条件。数值实验表明,我们的方法在使用较少的样本并与政策梯度相比使用更高的样本并实现更高的最终性能时,学习稳定控制器。
translated by 谷歌翻译
最近的研究表明,监督学习可以是为高维非线性动态系统设计最佳反馈控制器的有效工具。但是这些神经网络(NN)控制器的行为仍未得到很好的理解。在本文中,我们使用数值模拟来证明典型的测试精度度量没有有效地捕获NN控制器稳定系统的能力。特别是,具有高测试精度的一些NN不能稳定动态。为了解决这个问题,我们提出了两个NN架构,该架构在局部地近似线性二次调节器(LQR)。数值模拟确认了我们的直觉,即建议的架构可靠地产生稳定反馈控制器,而不会牺牲最佳状态。此外,我们介绍了描述这种NN控制系统的一些稳定性特性的初步理论结果。
translated by 谷歌翻译
现有的数据驱动和反馈流量控制策略不考虑实时数据测量的异质性。此外,对于缺乏数据效率,传统的加固学习方法(RL)方法通常会缓慢收敛。此外,常规的最佳外围控制方案需要对系统动力学的精确了解,因此对内源性不确定性会很脆弱。为了应对这些挑战,这项工作提出了一种基于不可或缺的增强学习(IRL)的方法来学习宏观交通动态,以进行自适应最佳周边控制。这项工作为运输文献做出了以下主要贡献:(a)开发连续的时间控制,并具有离散增益更新以适应离散时间传感器数据。 (b)为了降低采样复杂性并更有效地使用可用数据,将体验重播(ER)技术引入IRL算法。 (c)所提出的方法以“无模型”方式放松模型校准的要求,该方式可以稳健地进行建模不确定性,并通过数据驱动的RL算法增强实时性能。 (d)通过Lyapunov理论证明了基于IRL的算法和受控交通动力学的稳定性的收敛性。最佳控制定律被参数化,然后通过神经网络(NN)近似,从而缓解计算复杂性。在不需要模型线性化的同时,考虑了状态和输入约束。提出了数值示例和仿真实验,以验证所提出方法的有效性和效率。
translated by 谷歌翻译
本文涉及专业示范的学习安全控制法。我们假设系统动态和输出测量图的适当模型以及相应的错误界限。我们首先提出强大的输出控制屏障功能(ROCBF)作为保证安全的手段,通过控制安全集的前向不变性定义。然后,我们提出了一个优化问题,以从展示安全系统行为的专家演示中学习RocBF,例如,从人类运营商收集的数据。随着优化问题,我们提供可验证条件,可确保获得的Rocbf的有效性。这些条件在数据的密度和学习函数的LipsChitz和Lipshitz和界限常数上说明,以及系统动态和输出测量图的模型。当ROCBF的参数化是线性的,然后,在温和的假设下,优化问题是凸的。我们在自动驾驶模拟器卡拉验证了我们的调查结果,并展示了如何从RGB相机图像中学习安全控制法。
translated by 谷歌翻译
神经网络(NNS)已成功地用于代表复杂动力学系统的状态演变。这样的模型,称为NN动态模型(NNDMS),使用NN的迭代噪声预测来估计随时间推移系统轨迹的分布。尽管它们的准确性,但对NNDMS的安全分析仍然是一个具有挑战性的问题,并且在很大程度上尚未探索。为了解决这个问题,在本文中,我们介绍了一种为NNDM提供安全保证的方法。我们的方法基于随机屏障函数,其与安全性的关系类似于Lyapunov功能的稳定性。我们首先展示了通过凸优化问题合成NNDMS随机屏障函数的方法,该问题又为系统的安全概率提供了下限。我们方法中的一个关键步骤是,NNS的最新凸近似结果的利用是找到零件线性边界,这允许将屏障函数合成问题作为一个方形优化程序的制定。如果获得的安全概率高于所需的阈值,则该系统将获得认证。否则,我们引入了一种生成控制系统的方法,该系统以最小的侵入性方式稳健地最大化安全概率。我们利用屏障函数的凸属性来提出最佳控制合成问题作为线性程序。实验结果说明了该方法的功效。即,他们表明该方法可以扩展到具有多层和数百个神经元的多维NNDM,并且控制器可以显着提高安全性概率。
translated by 谷歌翻译