最近,基于障碍函数的安全强化学习(RL)与actor-批评结构用于连续控制任务的批评结构已经受到越来越受到关注。使用安全性和收敛保证,学习近最优控制政策仍然挑战。此外,很少有效地解决了在时变的安全约束下的安全RL算法设计。本文提出了一种基于模型的安全RL算法,用于具有时变状态和控制约束的非线性系统的最佳控制。在拟议的方法中,我们构建了一种新的基于障碍的控制策略结构,可以保证控制安全性。提出了一种多步骤策略评估机制,以预测策略在时变的安全限制下的安全风险,并指导政策安全更新。证明了稳定性和稳健性的理论结果。此外,分析了演员 - 评论家学习算法的收敛。所提出的算法的性能优于模拟安全健身房环境中的几种最先进的RL算法。此外,该方法适用于两个现实世界智能车辆的综合路径和碰撞避免问题。差动驱动车辆和Ackermann-Drive分别用于验证离线部署性能和在线学习性能。我们的方法在实验中显示了令人印象深刻的SIM-to-Real的转移能力和令人满意的在线控制性能。
translated by 谷歌翻译
在强化学习(RL)的试验和错误机制中,我们期望学习安全的政策时出现臭名昭着的矛盾:如何学习没有足够数据和关于危险区域的先前模型的安全政策?现有方法主要使用危险行动的后期惩罚,这意味着代理人不会受到惩罚,直到体验危险。这一事实导致代理商也无法在收敛之后学习零违规政策。否则,它不会收到任何惩罚并失去有关危险的知识。在本文中,我们提出了安全设置的演员 - 评论家(SSAC)算法,它使用面向安全的能量函数或安全索引限制了策略更新。安全索引旨在迅速增加,以便潜在的危险行动,这使我们能够在动作空间上找到安全设置,或控制安全集。因此,我们可以在服用它们之前识别危险行为,并在收敛后进一步获得零限制违规政策。我们声称我们可以以类似于学习价值函数的无模型方式学习能量函数。通过使用作为约束目标的能量函数转变,我们制定了受约束的RL问题。我们证明我们基于拉格朗日的解决方案确保学习的政策将收敛到某些假设下的约束优化。在复杂的模拟环境和硬件循环(HIL)实验中评估了所提出的算法,具有来自自动车辆的真实控制器。实验结果表明,所有环境中的融合政策达到了零限制违规和基于模型的基线的相当性能。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
本文开发了一种基于模型的强化学习(MBR)框架,用于在线在线学习无限范围最佳控制问题的价值函数,同时遵循表示为控制屏障功能(CBFS)的安全约束。我们的方法是通过开发一种新型的CBFS,称为Lyapunov样CBF(LCBF),其保留CBFS的有益特性,以开发最微创的安全控制政策,同时也具有阳性半自动等所需的Lyapunov样品质 - 义法。我们展示这些LCBFS如何用于增强基于学习的控制策略,以保证安全性,然后利用这种方法在MBRL设置中开发安全探索框架。我们表明,我们的开发方法可以通过各种数值示例来处理比较法的更通用的安全限制。
translated by 谷歌翻译
在本文中,我们研究了加强学习问题的安全政策的学习。这是,我们的目标是控制我们不知道过渡概率的马尔可夫决策过程(MDP),但我们通过经验访问样品轨迹。我们将安全性定义为在操作时间内具有高概率的期望安全集中的代理。因此,我们考虑受限制的MDP,其中限制是概率。由于没有直接的方式来优化关于加强学习框架中的概率约束的政策,因此我们提出了对问题的遍历松弛。拟议的放松的优点是三倍。 (i)安全保障在集界任务的情况下保持,并且它们保持在一个给定的时间范围内,以继续进行任务。 (ii)如果政策的参数化足够丰富,则约束优化问题尽管其非凸起具有任意小的二元间隙。 (iii)可以使用标准策略梯度结果和随机近似工具容易地计算与安全学习问题相关的拉格朗日的梯度。利用这些优势,我们建立了原始双算法能够找到安全和最佳的政策。我们在连续域中的导航任务中测试所提出的方法。数值结果表明,我们的算法能够将策略动态调整到环境和所需的安全水平。
translated by 谷歌翻译
强化学习(RL)是一种有希望的方法,对现实世界的应用程序取得有限,因为确保安全探索或促进充分利用是控制具有未知模型和测量不确定性的机器人系统的挑战。这种学习问题对于连续空间(状态空间和动作空间)的复杂任务变得更加棘手。在本文中,我们提出了一种由几个方面组成的基于学习的控制框架:(1)线性时间逻辑(LTL)被利用,以便于可以通过无限视野的复杂任务转换为新颖的自动化结构; (2)我们为RL-Agent提出了一种创新的奖励计划,正式保证,使全球最佳政策最大化满足LTL规范的概率; (3)基于奖励塑造技术,我们开发了利用自动机构结构的好处进行了模块化的政策梯度架构来分解整体任务,并促进学习控制器的性能; (4)通过纳入高斯过程(GPS)来估计不确定的动态系统,我们使用指数控制屏障功能(ECBF)综合基于模型的保障措施来解决高阶相对度的问题。此外,我们利用LTL自动化和ECBF的性质来构建引导过程,以进一步提高勘探效率。最后,我们通过多个机器人环境展示了框架的有效性。我们展示了这种基于ECBF的模块化深RL算法在训练期间实现了近乎完美的成功率和保护安全性,并且在训练期间具有很高的概率信心。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
当任何安全违规可能导致灾难性失败时,赛车要求每个车辆都能在其物质范围内驾驶。在这项工作中,我们研究了自主赛车的安全强化学习(RL)的问题,使用车辆的自我摄像机视图和速度作为输入。鉴于任务的性质,自主代理需要能够1)识别并避免复杂的车辆动态下的不安全场景,而2)在快速变化的环境中使子第二决定。为了满足这些标准,我们建议纳入汉密尔顿 - 雅各(HJ)可达性理论,是一般非线性系统的安全验证方法,进入受约束的马尔可夫决策过程(CMDP)框架。 HJ可达性不仅提供了一种了解安全的控制理论方法,还可以实现低延迟安全验证。尽管HJ可达性传统上不可扩展到高维系统,但我们证明了具有神经逼近的,可以直接在视觉上下文中学习HJ安全值 - 迄今为止通过该方法研究的最高尺寸问题。我们在最近发布的高保真自主赛车环境中评估了我们在几个基准任务中的方法,包括安全健身房和学习(L2R)。与安全健身房的其他受约束的RL基线相比,我们的方法非常少的限制性违规,并在L2R基准任务上实现了新的最先进结果。我们在以下匿名纸质网站提供额外可视化代理行为:https://sites.google.com/view/safeautomouracing/home
translated by 谷歌翻译
在许多情况下,增强学习(RL)已被证明是有效的。但是,通常需要探索足够多的国家行动对,其中一些对不安全。因此,其应用于安全至关重要的系统仍然是一个挑战。解决安全性的越来越普遍的方法涉及将RL动作投射到安全的一组动作上的安全层。反过来,此类框架的困难是如何有效地将RL与安全层搭配以提高学习绩效。在本文中,我们将安全性作为基于型号的RL框架中的可区分强大控制式 - 助推器功能层。此外,我们还提出了一种模块化学习基本奖励驱动的任务的方法,独立于安全限制。我们证明,这种方法既可以确保安全性,又可以有效地指导一系列实验中的训练期间的探索,包括以模块化的方式学习奖励时,包括零拍传递。
translated by 谷歌翻译
行动调速器是标称控制循环的附加方案,该方案监视和调整控制措施以强制执行以端加状态和控制约束表示的安全规范。在本文中,我们介绍了系统的强大动作调速器(RAG),该动力学可以使用具有参数和加法不确定性的离散时间分段仿射(PWA)模型来表示,并受到非convex约束。我们开发了抹布的理论属性和计算方法。之后,我们介绍了抹布来实现安全加强学习(RL),即确保在线RL勘探和探索过程中的历史约束满意度。该开发使控制策略的安全实时演变和适应操作环境和系统参数的变化(由于老化,损坏等)。我们通过考虑将其应用于质量 - 弹簧式抑制系统的软地面问题来说明抹布在约束执法和安全RL中的有效性。
translated by 谷歌翻译
在最近的文献中,学习方法与模型预测控制(MPC)的结合吸引了大量关注。这种组合的希望是减少MPC方案对准确模型的依赖,并利用快速开发的机器学习和强化学习工具,以利用许多系统可用的数据量。特别是,增强学习和MPC的结合已被认为是一种可行且理论上合理的方法,以引入可解释的,安全和稳定的政策,以实现强化学习。但是,一种正式的理论详细介绍了如何通过学习工具提供的参数更新来维持基于MPC的策略的安全性和稳定性。本文解决了这一差距。该理论是针对通用的强大MPC案例开发的,并在基于强大的管线MPC情况的模拟中应用,在该情况下,该理论在实践中很容易部署。本文着重于增强学习作为学习工具,但它适用于任何在线更新MPC参数的学习方法。
translated by 谷歌翻译
The deployment of robots in uncontrolled environments requires them to operate robustly under previously unseen scenarios, like irregular terrain and wind conditions. Unfortunately, while rigorous safety frameworks from robust optimal control theory scale poorly to high-dimensional nonlinear dynamics, control policies computed by more tractable "deep" methods lack guarantees and tend to exhibit little robustness to uncertain operating conditions. This work introduces a novel approach enabling scalable synthesis of robust safety-preserving controllers for robotic systems with general nonlinear dynamics subject to bounded modeling error by combining game-theoretic safety analysis with adversarial reinforcement learning in simulation. Following a soft actor-critic scheme, a safety-seeking fallback policy is co-trained with an adversarial "disturbance" agent that aims to invoke the worst-case realization of model error and training-to-deployment discrepancy allowed by the designer's uncertainty. While the learned control policy does not intrinsically guarantee safety, it is used to construct a real-time safety filter (or shield) with robust safety guarantees based on forward reachability rollouts. This shield can be used in conjunction with a safety-agnostic control policy, precluding any task-driven actions that could result in loss of safety. We evaluate our learning-based safety approach in a 5D race car simulator, compare the learned safety policy to the numerically obtained optimal solution, and empirically validate the robust safety guarantee of our proposed safety shield against worst-case model discrepancy.
translated by 谷歌翻译
稳定性和安全性是成功部署自动控制系统的关键特性。作为一个激励示例,请考虑在复杂的环境中自动移动机器人导航。概括到不同操作条件的控制设计需要系统动力学模型,鲁棒性建模错误以及对安全\ newzl {约束}的满意度,例如避免碰撞。本文开发了一个神经普通微分方程网络,以从轨迹数据中学习哈密顿系统的动态。学识渊博的哈密顿模型用于合成基于能量的被动性控制器,并分析其\ emph {鲁棒性},以在学习模型及其\ emph {Safety}中对环境施加的约束。考虑到系统的所需参考路径,我们使用虚拟参考调查员扩展了设计,以实现跟踪控制。州长国家是一个调节点,沿参考路径移动,平衡系统能级,模型不确定性界限以及违反安全性的距离,以确保稳健性和安全性。我们的哈密顿动力学学习和跟踪控制技术在\修订后的{模拟的己谐和四型机器人}在混乱的3D环境中导航。
translated by 谷歌翻译
强化学习(RL)文献的最新进展使机器人主义者能够在模拟环境中自动训练复杂的政策。但是,由于这些方法的样本复杂性差,使用现实世界数据解决强化学习问题仍然是一个具有挑战性的问题。本文介绍了一种新颖的成本整形方法,旨在减少学习稳定控制器所需的样品数量。该方法添加了一个涉及控制Lyapunov功能(CLF)的术语 - 基于模型的控制文献的“能量样”功能 - 到典型的成本配方。理论结果表明,新的成本会导致使用较小的折现因子时稳定控制器,这是众所周知的,以降低样品复杂性。此外,通过确保即使是高度亚最佳的策略也可以稳定系统,添加CLF术语“鲁棒化”搜索稳定控制器。我们通过两个硬件示例演示了我们的方法,在其中我们学习了一个cartpole的稳定控制器和仅使用几秒钟和几分钟的微调数据的A1稳定控制器。
translated by 谷歌翻译
In contrast to the control-theoretic methods, the lack of stability guarantee remains a significant problem for model-free reinforcement learning (RL) methods. Jointly learning a policy and a Lyapunov function has recently become a promising approach to ensuring the whole system with a stability guarantee. However, the classical Lyapunov constraints researchers introduced cannot stabilize the system during the sampling-based optimization. Therefore, we propose the Adaptive Stability Certification (ASC), making the system reach sampling-based stability. Because the ASC condition can search for the optimal policy heuristically, we design the Adaptive Lyapunov-based Actor-Critic (ALAC) algorithm based on the ASC condition. Meanwhile, our algorithm avoids the optimization problem that a variety of constraints are coupled into the objective in current approaches. When evaluated on ten robotic tasks, our method achieves lower accumulated cost and fewer stability constraint violations than previous studies.
translated by 谷歌翻译
由于存在动态变化,在标称环境中培训的强化学习(RL)控制策略可能在新的/扰动环境中失败。为了控制具有连续状态和动作空间的系统,我们提出了一种加载方法,通过使用$ \ mathcal {l} _ {1} $自适应控制器($ \ mathcal {l} _{1} $ AC)。利用$ \ mathcal {l} _ {1} $ AC的能力进行快速估计和动态变化的主动补偿,所提出的方法可以提高RL策略的稳健性,该策略在模拟器或现实世界中培训不考虑广泛的动态变化。数值和现实世界实验经验证明了所提出的方法在使用无模型和基于模型的方法训练的RL政策中的强制性策略的功效。用于真正的拼图设置实验的视频是可用的://youtu.be/xgob9vpyuge。
translated by 谷歌翻译
现有的数据驱动和反馈流量控制策略不考虑实时数据测量的异质性。此外,对于缺乏数据效率,传统的加固学习方法(RL)方法通常会缓慢收敛。此外,常规的最佳外围控制方案需要对系统动力学的精确了解,因此对内源性不确定性会很脆弱。为了应对这些挑战,这项工作提出了一种基于不可或缺的增强学习(IRL)的方法来学习宏观交通动态,以进行自适应最佳周边控制。这项工作为运输文献做出了以下主要贡献:(a)开发连续的时间控制,并具有离散增益更新以适应离散时间传感器数据。 (b)为了降低采样复杂性并更有效地使用可用数据,将体验重播(ER)技术引入IRL算法。 (c)所提出的方法以“无模型”方式放松模型校准的要求,该方式可以稳健地进行建模不确定性,并通过数据驱动的RL算法增强实时性能。 (d)通过Lyapunov理论证明了基于IRL的算法和受控交通动力学的稳定性的收敛性。最佳控制定律被参数化,然后通过神经网络(NN)近似,从而缓解计算复杂性。在不需要模型线性化的同时,考虑了状态和输入约束。提出了数值示例和仿真实验,以验证所提出方法的有效性和效率。
translated by 谷歌翻译
具有安全行为的赋予非线性系统在现代控制中越来越重要。对于必须在动态变化的环境中安全运行的现实生活控制系统,此任务尤其具有挑战性。本文通过建立环境控制障碍功能(ECBFS)的概念,在动态环境中开发了一种安全关键控制框架。即使在输入延迟存在下,该框架也能够保证安全性,通过占系统延迟响应期间环境的演变。潜在的控制合成依赖于预测系统的未来状态和延迟间隔通过延迟间隔,具有稳健的安全保证预测误差。通过简单的自适应巡航控制问题和更复杂的机器人应用在SEGWAY平台上证明了所提出的方法的功效。
translated by 谷歌翻译
In this work, we propose a collision-free source seeking control framework for unicycle robots traversing an unknown cluttered environment. In this framework, the obstacle avoidance is guided by the control barrier functions (CBF) embedded in quadratic programming and the source seeking control relies solely on the use of on-board sensors that measure signal strength of the source. To tackle the mixed relative degree of the CBF, we proposed three different CBF, namely the zeroing control barrier functions (ZCBF), exponential control barrier functions (ECBF), and reciprocal control barrier functions (RCBF) that can directly be integrated with our recent gradient-ascent source-seeking control law. We provide rigorous analysis of the three different methods and show the efficacy of the approaches in simulations using Matlab, as well as, using a realistic dynamic environment with moving obstacles in Gazebo/ROS.
translated by 谷歌翻译
许多机器人任务需要高维传感器,如相机和激光雷达,以导航复杂的环境,但是在这些传感器周围开发认可的安全反馈控制器仍然是一个具有挑战性的公开问题,特别是在涉及学习时的开放问题。以前的作品通过分离感知和控制子系统并对感知子系统的能力做出强烈的假设来证明了感知反馈控制器的安全性。在这项工作中,我们介绍了一种新的启用学习的感知反馈混合控制器,在那里我们使用控制屏障函数(CBF)和控制Lyapunov函数(CLF)来显示全堆叠感知反馈控制器的安全性和活力。我们使用神经网络直接在机器人的观察空间中学习全堆栈系统的CBF和CLF,而无需承担基于感知的状态估计器。我们的混合控制器称为基因座(使用切换启用了学习的观察反馈控制),可以安全地导航未知的环境,始终如一地达到其目标,并将安全性安全地概括为培训数据集之外的环境。我们在模拟和硬件中展示了实验中的轨迹,在那里它使用LIDAR传感器的反馈成功地导航变化环境。
translated by 谷歌翻译