In this work, we propose a collision-free source seeking control framework for unicycle robots traversing an unknown cluttered environment. In this framework, the obstacle avoidance is guided by the control barrier functions (CBF) embedded in quadratic programming and the source seeking control relies solely on the use of on-board sensors that measure signal strength of the source. To tackle the mixed relative degree of the CBF, we proposed three different CBF, namely the zeroing control barrier functions (ZCBF), exponential control barrier functions (ECBF), and reciprocal control barrier functions (RCBF) that can directly be integrated with our recent gradient-ascent source-seeking control law. We provide rigorous analysis of the three different methods and show the efficacy of the approaches in simulations using Matlab, as well as, using a realistic dynamic environment with moving obstacles in Gazebo/ROS.
translated by 谷歌翻译
This paper provides an introduction and overview of recent work on control barrier functions and their use to verify and enforce safety properties in the context of (optimization based) safety-critical controllers. We survey the main technical results and discuss applications to several domains including robotic systems.
translated by 谷歌翻译
在本文中,我们提出了针对无人接地车辆(UGV)的新的控制屏障功能(CBF),该功能有助于避免与运动学(非零速度)障碍物发生冲突。尽管当前的CBF形式已经成功地保证了与静态障碍物的安全/碰撞避免安全性,但动态案例的扩展已获得有限的成功。此外,借助UGV模型,例如Unicycle或自行车,现有CBF的应用在控制方面是保守的,即在某些情况下不可能进行转向/推力控制。从经典的碰撞锥中汲取灵感来避免轨迹规划,我们介绍了其新颖的CBF配方,并具有对独轮车和自行车模型的安全性保证。主要思想是确保障碍物的速度W.R.T.车辆总是指向车辆。因此,我们构建了一个约束,该约束确保速度向量始终避开指向车辆的向量锥。这种新控制方法的功效在哥白尼移动机器人上进行了实验验证。我们将其进一步扩展到以自行车模型的形式扩展到自动驾驶汽车,并在Carla模拟器中的各种情况下证明了避免碰撞。
translated by 谷歌翻译
我们开发了一种自主导航算法,用于在二维环境中运行的机器人杂乱,其具有任意凸形的障碍物。所提出的导航方法依赖于混合反馈,以保证机器人对预定目标位置的全局渐近稳定,同时确保无障碍工作空间的前向不变性。主要思想在于基于机器人相对于最近障碍的接近设计,在移动到目标模式和障碍物避免模式之间设计适当的切换策略。当机器人初始化远离障碍物的边界时,所提出的混合控制器产生连续速度输入轨迹。最后,我们为所提出的混合控制器的基于传感器的实现提供了一种算法过程,并通过一些仿真结果验证其有效性。
translated by 谷歌翻译
对于多面体之间的障碍物躲避开发的控制器是在狭小的空间导航一个具有挑战性的和必要的问题。传统的方法只能制定的避障问题,因为离线优化问题。为了应对这些挑战,我们提出用非光滑控制屏障功能多面体之间的避障,它可以实时与基于QP的优化问题来解决基于二元安全关键最优控制。一种双优化问题被引入到表示被施加到构造控制屏障功能多面体和用于双形式的拉格朗日函数之间的最小距离。我们验证了避开障碍物与在走廊环境受控的L形(沙发形)机器人建议的双配制剂。据我们所知,这是第一次,实时紧避障与非保守的演习是在移动沙发(钢琴)与非线性动力学问题来实现的。
translated by 谷歌翻译
本文介绍了机器人系统的安全关键控制的框架,当配置空间中的安全区域上定义了安全区域时。为了保持安全性,我们基于控制屏障函数理论综合安全速度而不依赖于机器人的A可能复杂的高保真动态模型。然后,我们跟踪跟踪控制器的安全速度。这使得在无模型安全关键控制中。我们证明了拟议方法的理论安全保障。最后,我们证明这种方法是适用于棘手的。我们在高保真仿真中使用SEGWAY执行障碍避免任务,以及在硬件实验中的无人机和Quadruped。
translated by 谷歌翻译
在本文中,我们基于非线性模型预测控制(NMPC)方法提出了一种分散的控制方法,该方法采用屏障证书在具有静态和/或动态障碍的未知环境中安全导航的多个非独立轮式移动机器人。该方法将学习的屏障功能(LBF)纳入NMPC设计中,以确保安全机器人导航,即防止机器人与其他机器人和障碍物的碰撞。我们将我们提出的控制方法称为NMPC-LBF。由于每个机器人都没有关于障碍物和其他机器人的先验知识,因此我们使用每个机器人实时运行的深神经网络(DEEPNN),仅从机器人的刺激镜头和探针测量中学习屏障功能(BF)。深文经过训练,可以学习分离安全和不安全地区的BF。在不同情况下,我们对模拟和实际Turtlebot3汉堡机器人实施了建议的方法。实施结果显示了NMPC-LBF方法在确保机器人安全导航方面的有效性。
translated by 谷歌翻译
具有安全行为的赋予非线性系统在现代控制中越来越重要。对于必须在动态变化的环境中安全运行的现实生活控制系统,此任务尤其具有挑战性。本文通过建立环境控制障碍功能(ECBFS)的概念,在动态环境中开发了一种安全关键控制框架。即使在输入延迟存在下,该框架也能够保证安全性,通过占系统延迟响应期间环境的演变。潜在的控制合成依赖于预测系统的未来状态和延迟间隔通过延迟间隔,具有稳健的安全保证预测误差。通过简单的自适应巡航控制问题和更复杂的机器人应用在SEGWAY平台上证明了所提出的方法的功效。
translated by 谷歌翻译
本文考虑了非独立多机器人系统的同时位置和方向计划。与仅关注最终位置限制的常见研究不同,我们将非语言移动机器人建模为刚性机构,并引入机器人最终状态的方向和位置约束。换句话说,机器人不仅应达到指定的位置,而且还应同时指出所需的方向。这个问题的挑战在于全州运动计划的不足,因为只需要通过两个控制输入来计划三个州。为此,我们根据刚体建模提出了动态矢量场(DVF)。具体而言,机器人方向的动力学被带入矢量场,这意味着向量场不再是2-D平面上的静态,而是一个动态的,而动态场却随态度角度而变化。因此,每个机器人可以沿DVF的积分曲线移动以达到所需位置,与此同时,姿态角可以在方向动力学之后收敛到指定值。随后,通过在DVF的框架下设计一个圆形向量场,我们进一步研究了运动计划中的避免障碍物和相互企业的避免。最后,提供了数值仿真示例,以验证提出的方法的有效性。
translated by 谷歌翻译
Safety critical systems involve the tight coupling between potentially conflicting control objectives and safety constraints. As a means of creating a formal framework for controlling systems of this form, and with a view toward automotive applications, this paper develops a methodology that allows safety conditions-expressed as control barrier functionsto be unified with performance objectives-expressed as control Lyapunov functions-in the context of real-time optimizationbased controllers. Safety conditions are specified in terms of forward invariance of a set, and are verified via two novel generalizations of barrier functions; in each case, the existence of a barrier function satisfying Lyapunov-like conditions implies forward invariance of the set, and the relationship between these two classes of barrier functions is characterized. In addition, each of these formulations yields a notion of control barrier function (CBF), providing inequality constraints in the control input that, when satisfied, again imply forward invariance of the set. Through these constructions, CBFs can naturally be unified with control Lyapunov functions (CLFs) in the context of a quadratic program (QP); this allows for the achievement of control objectives (represented by CLFs) subject to conditions on the admissible states of the system (represented by CBFs). The mediation of safety and performance through a QP is demonstrated on adaptive cruise control and lane keeping, two automotive control problems that present both safety and performance considerations coupled with actuator bounds.
translated by 谷歌翻译
我们为非全面移动机器人设计了MPC方法,并在分析上表明,随着时间的变化,线性化的系统可以在跟踪任务中的来源周围产生渐近稳定性。为了避免障碍物,我们提出了速度空间中的约束,该约束根据当前状态明确耦合两个控件输入。
translated by 谷歌翻译
Safe and smooth robot motion around obstacles is an essential skill for autonomous robots, especially when operating around people and other robots. Conventionally, due to real-time operation requirements and onboard computation limitations, many robot motion planning and control methods follow a two-step approach: first construct a (e.g., piecewise linear) collision-free reference path for a simplified robot model, and then execute the reference plan via path-following control for a more accurate and complex robot model. A challenge of such a decoupled robot motion planning and control method for highly dynamic robotic systems is ensuring the safety of path-following control as well as the successful completion of the reference plan. In this paper, we introduce a novel dynamical systems approach for online closed-loop time parametrization, called $\textit{a time governor}$, of a reference path for provably correct and safe path-following control based on feedback motion prediction, where the safety of robot motion under path-following control is continuously monitored using predicted robot motion. After introducing the general framework of time governors for safe path following, we present an example application for the fully actuated high-order robot dynamics using proportional-and-higher-order-derivative (PhD) path-following control whose feedback motion prediction is performed by Lyapunov ellipsoids and Vandemonde simplexes. In numerical simulations, we investigate the role of reference position and velocity feedback, and motion prediction on path-following performance and robot motion.
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
本文涉及专业示范的学习安全控制法。我们假设系统动态和输出测量图的适当模型以及相应的错误界限。我们首先提出强大的输出控制屏障功能(ROCBF)作为保证安全的手段,通过控制安全集的前向不变性定义。然后,我们提出了一个优化问题,以从展示安全系统行为的专家演示中学习RocBF,例如,从人类运营商收集的数据。随着优化问题,我们提供可验证条件,可确保获得的Rocbf的有效性。这些条件在数据的密度和学习函数的LipsChitz和Lipshitz和界限常数上说明,以及系统动态和输出测量图的模型。当ROCBF的参数化是线性的,然后,在温和的假设下,优化问题是凸的。我们在自动驾驶模拟器卡拉验证了我们的调查结果,并展示了如何从RGB相机图像中学习安全控制法。
translated by 谷歌翻译
作为一个简单且强大的移动机器人基础,可以将差速器驱动器机器人建模为运动学独轮车,在工业和国内环境中找到了物流和服务机器人技术的重要应用。安全的机器人在障碍物周围导航是这样的独轮车机器人在复杂的混乱环境中执行各种有用任务的重要技能,尤其是在人和其他机器人周围。在本文中,作为标准圆形Lyapunov级集的更准确的替代方法,我们介绍了新型的锥形反馈运动预测方法,用于在标准的Unicycle运动控制方法下界定运动学Unicycle机器人机器人模型的近环运动轨迹。我们介绍了使用参考调速器的安全机器人导航的Unicycle反馈运动预测的应用,在该机器人的安全下,根据预测的机器人运动,不断监视独轮车运动的安全性。我们研究了运动预测对机器人行为在数值模拟中的作用,并得出结论,准确的反馈运动预测是安全和快速机器人导航的关键。
translated by 谷歌翻译
本文开发了一种基于模型的强化学习(MBR)框架,用于在线在线学习无限范围最佳控制问题的价值函数,同时遵循表示为控制屏障功能(CBFS)的安全约束。我们的方法是通过开发一种新型的CBFS,称为Lyapunov样CBF(LCBF),其保留CBFS的有益特性,以开发最微创的安全控制政策,同时也具有阳性半自动等所需的Lyapunov样品质 - 义法。我们展示这些LCBFS如何用于增强基于学习的控制策略,以保证安全性,然后利用这种方法在MBRL设置中开发安全探索框架。我们表明,我们的开发方法可以通过各种数值示例来处理比较法的更通用的安全限制。
translated by 谷歌翻译
基于控制屏障功能(CBF)的安全过滤器已成为自治系统安全至关重要控制的实用工具。这些方法通过价值函数编码安全性,并通过对该值函数的时间导数施加限制来执行安全。但是,在存在输入限制的情况下合成并非过于保守的有效CBF是一个臭名昭著的挑战。在这项工作中,我们建议使用正式验证方法提炼候选CBF,以获得有效的CBF。特别是,我们使用基于动态编程(DP)的可及性分析更新专家合成或备份CBF。我们的框架RefineCBF保证,在每次DP迭代中,获得的CBF至少与先前的迭代一样安全,并收集到有效的CBF。因此,RefineCBF可用于机器人系统。我们证明了我们在模拟中使用各种CBF合成技术来增强安全性和/或降低一系列非线性控制型系统系统的保守性的实用性。
translated by 谷歌翻译
本文提出了一种有效且安全的方法,可以避免基于LiDAR的静态和动态障碍。首先,点云用于生成实时的本地网格映射以进行障碍物检测。然后,障碍物由DBSCAN算法聚集,并用最小边界椭圆(MBE)包围。此外,进行数据关联是为了使每个MBE与当前帧中的障碍匹配。考虑到MBE作为观察,Kalman滤波器(KF)用于估计和预测障碍物的运动状态。通过这种方式,可以将远期时间域中每个障碍物的轨迹作为一组椭圆化。由于MBE的不确定性,参数化椭圆形的半肢和半尺寸轴被扩展以确保安全性。我们扩展了传统的控制屏障功能(CBF),并提出动态控制屏障功能(D-CBF)。我们将D-CBF与模型预测控制(MPC)结合起来,以实施安全至关重要的动态障碍。进行了模拟和实际场景中的实验,以验证我们算法的有效性。源代码发布以供社区参考。
translated by 谷歌翻译
许多机器人任务需要高维传感器,如相机和激光雷达,以导航复杂的环境,但是在这些传感器周围开发认可的安全反馈控制器仍然是一个具有挑战性的公开问题,特别是在涉及学习时的开放问题。以前的作品通过分离感知和控制子系统并对感知子系统的能力做出强烈的假设来证明了感知反馈控制器的安全性。在这项工作中,我们介绍了一种新的启用学习的感知反馈混合控制器,在那里我们使用控制屏障函数(CBF)和控制Lyapunov函数(CLF)来显示全堆叠感知反馈控制器的安全性和活力。我们使用神经网络直接在机器人的观察空间中学习全堆栈系统的CBF和CLF,而无需承担基于感知的状态估计器。我们的混合控制器称为基因座(使用切换启用了学习的观察反馈控制),可以安全地导航未知的环境,始终如一地达到其目标,并将安全性安全地概括为培训数据集之外的环境。我们在模拟和硬件中展示了实验中的轨迹,在那里它使用LIDAR传感器的反馈成功地导航变化环境。
translated by 谷歌翻译
Designing safety-critical control for robotic manipulators is challenging, especially in a cluttered environment. First, the actual trajectory of a manipulator might deviate from the planned one due to the complex collision environments and non-trivial dynamics, leading to collision; Second, the feasible space for the manipulator is hard to obtain since the explicit distance functions between collision meshes are unknown. By analyzing the relationship between the safe set and the controlled invariant set, this paper proposes a data-driven control barrier function (CBF) construction method, which extracts CBF from distance samples. Specifically, the CBF guarantees the controlled invariant property for considering the system dynamics. The data-driven method samples the distance function and determines the safe set. Then, the CBF is synthesized based on the safe set by a scenario-based sum of square (SOS) program. Unlike most existing linearization based approaches, our method reserves the volume of the feasible space for planning without approximation, which helps find a solution in a cluttered environment. The control law is obtained by solving a CBF-based quadratic program in real time, which works as a safe filter for the desired planning-based controller. Moreover, our method guarantees safety with the proven probabilistic result. Our method is validated on a 7-DOF manipulator in both real and virtual cluttered environments. The experiments show that the manipulator is able to execute tasks where the clearance between obstacles is in millimeters.
translated by 谷歌翻译