针对组织病理学图像数据的临床决策支持主要侧重于强烈监督的注释,这提供了直观的解释性,但受专业表现的束缚。在这里,我们提出了一种可解释的癌症复发预测网络(Ecarenet),并表明没有强注释的端到端学习提供最先进的性能,而可以通过注意机制包括可解释性。在前列腺癌生存预测的用例上,使用14,479个图像和仅复发时间作为注释,我们在验证集中达到0.78的累积动态AUC,与专家病理学家(以及在单独测试中的AUC为0.77放)。我们的模型是良好的校准,输出生存曲线以及每位患者的风险分数和群体。利用多实例学习层的注意重量,我们表明恶性斑块对预测的影响较高,从而提供了对预测的直观解释。我们的代码可在www.github.com/imsb-uke/ecarenet上获得。
translated by 谷歌翻译
Attention-based multiple instance learning (AMIL) algorithms have proven to be successful in utilizing gigapixel whole-slide images (WSIs) for a variety of different computational pathology tasks such as outcome prediction and cancer subtyping problems. We extended an AMIL approach to the task of survival prediction by utilizing the classical Cox partial likelihood as a loss function, converting the AMIL model into a nonlinear proportional hazards model. We applied the model to tissue microarray (TMA) slides of 330 lung cancer patients. The results show that AMIL approaches can handle very small amounts of tissue from a TMA and reach similar C-index performance compared to established survival prediction methods trained with highly discriminative clinical factors such as age, cancer grade, and cancer stage
translated by 谷歌翻译
已经开发了几种深度学习算法,以使用整个幻灯片图像(WSIS)预测癌症患者的存活。但是,WSI中与患者的生存和疾病进展有关的WSI中的图像表型对临床医生而言都是困难的,以及深度学习算法。用于生存预测的大多数基于深度学习的多个实例学习(MIL)算法使用顶级实例(例如Maxpooling)或顶级/底部实例(例如,Mesonet)来识别图像表型。在这项研究中,我们假设WSI中斑块得分分布的全面信息可以更好地预测癌症的生存。我们开发了一种基于分布的多构度生存学习算法(DeepDismisl)来验证这一假设。我们使用两个大型国际大型癌症WSIS数据集设计和执行实验-MCO CRC和TCGA Coad -Read。我们的结果表明,有关WSI贴片分数的分布的信息越多,预测性能越好。包括每个选定分配位置(例如百分位数)周围的多个邻域实例可以进一步改善预测。与最近发表的最新算法相比,DeepDismisl具有优越的预测能力。此外,我们的算法是可以解释的,可以帮助理解癌症形态表型与癌症生存风险之间的关系。
translated by 谷歌翻译
组织病理学图像提供了癌症诊断的明确来源,其中包含病理学家用来识别和分类恶性疾病的信息,并指导治疗选择。这些图像包含大量信息,其中大部分目前不可用人类的解释。有监督的深度学习方法对于分类任务非常有力,但它们本质上受注释的成本和质量限制。因此,我们开发了组织形态表型学习,这是一种无监督的方法,它不需要注释,并且通过小图像瓷砖中的歧视性图像特征的自我发现进行操作。瓷砖分为形态上相似的簇,这些簇似乎代表了自然选择下出现的肿瘤生长的复发模式。这些簇具有不同的特征,可以使用正交方法识别。应用于肺癌组织,我们表明它们与患者的结局紧密保持一致,组织病理学识别的肿瘤类型和生长模式以及免疫表型的转录组度量。
translated by 谷歌翻译
数据分析方法的组合,提高计算能力和改进的传感器可以实现定量颗粒状,基于细胞的分析。我们描述了与组织解释和调查AI方法有关的丰富应用挑战集,目前用于应对这些挑战。我们专注于一类针对性的人体组织分析 - 组织病理学 - 旨在定量表征疾病状态,患者结果预测和治疗转向。
translated by 谷歌翻译
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical. Previous studies employ multiple instance learning (MIL) to represent WSIs as bags of sampled patches because, for most occasions, only slide-level labels are available, and only a tiny region of the WSI is disease-positive area. However, WSI representation learning still remains an open problem due to: (1) patch sampling on a higher resolution may be incapable of depicting microenvironment information such as the relative position between the tumor cells and surrounding tissues, while patches at lower resolution lose the fine-grained detail; (2) extracting patches from giant WSI results in large bag size, which tremendously increases the computational cost. To solve the problems, this paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes. Precisely, we randomly extract instant-level patch features from WSIs with different magnification. Then a co-attention mapping between imaging and genomics is learned to uncover the pairwise interaction and reduce the space complexity of imaging features. Such early fusion makes it computationally feasible to use MIL Transformer for the survival prediction task. Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability. We evaluate our approach on five cancer types from the Cancer Genome Atlas database and achieved an average c-index of $0.673$, outperforming the state-of-the-art multimodality methods.
translated by 谷歌翻译
Graph convolutional neural networks have shown significant potential in natural and histopathology images. However, their use has only been studied in a single magnification or multi-magnification with late fusion. In order to leverage the multi-magnification information and early fusion with graph convolutional networks, we handle different embedding spaces at each magnification by introducing the Multi-Scale Relational Graph Convolutional Network (MS-RGCN) as a multiple instance learning method. We model histopathology image patches and their relation with neighboring patches and patches at other scales (i.e., magnifications) as a graph. To pass the information between different magnification embedding spaces, we define separate message-passing neural networks based on the node and edge type. We experiment on prostate cancer histopathology images to predict the grade groups based on the extracted features from patches. We also compare our MS-RGCN with multiple state-of-the-art methods with evaluations on both source and held-out datasets. Our method outperforms the state-of-the-art on both datasets and especially on the classification of grade groups 2 and 3, which are significant for clinical decisions for patient management. Through an ablation study, we test and show the value of the pertinent design features of the MS-RGCN.
translated by 谷歌翻译
Molecular and genomic properties are critical in selecting cancer treatments to target individual tumors, particularly for immunotherapy. However, the methods to assess such properties are expensive, time-consuming, and often not routinely performed. Applying machine learning to H&E images can provide a more cost-effective screening method. Dozens of studies over the last few years have demonstrated that a variety of molecular biomarkers can be predicted from H&E alone using the advancements of deep learning: molecular alterations, genomic subtypes, protein biomarkers, and even the presence of viruses. This article reviews the diverse applications across cancer types and the methodology to train and validate these models on whole slide images. From bottom-up to pathologist-driven to hybrid approaches, the leading trends include a variety of weakly supervised deep learning-based approaches, as well as mechanisms for training strongly supervised models in select situations. While results of these algorithms look promising, some challenges still persist, including small training sets, rigorous validation, and model explainability. Biomarker prediction models may yield a screening method to determine when to run molecular tests or an alternative when molecular tests are not possible. They also create new opportunities in quantifying intratumoral heterogeneity and predicting patient outcomes.
translated by 谷歌翻译
最早的早期结肠直肠癌(CRC)患者可以单独通过手术治愈,只有某些高风险的早期CRC患者受益于佐剂化学疗法。然而,很少有验证的生物标志物可用于准确预测术后化疗的生存效果。我们开发了一种新的深度学习算法(CRCNET),使用来自分子和细胞肿瘤(MCO)的全滑动图像来预测II / III CRC中辅助化疗的存活效益。我们通过交叉验证和外部使用来自癌症基因组Atlas(TCGA)的独立队列的外部验证了CRCNet。我们表明,CRCNet不仅可以准确地预测生存预后,还可以进行佐剂化疗的治疗效果。 CRCNET鉴定了来自佐剂化疗的高危亚组益处,在化疗治疗的患者中,观察到辅助化疗最大而显着的存活率。相反,在CRCNET低和中风险亚组中观察到最小化疗益处。因此,CRCNET可能在阶段II / III CRC的指导治疗方面具有很大的用途。
translated by 谷歌翻译
目的:开发和验证基于临床阴性ALN的早期乳腺癌(EBC)术后预测腋窝淋巴结(ALN)转移的深度学习(DL)的主要肿瘤活检签名。方法:从2010年5月到2020年5月,共注册了1,058名具有病理证实ALN状态的eBC患者。基于关注的多实例学习(AMIL)框架,建立了一种DL核心针活检(DL-CNB)模型利用DL特征预测ALN状态,该DL特征从两位病理学家注释的乳腺CNB样本的数字化全幻灯片(WSIS)的癌症区域提取。分析了准确性,灵敏度,特异性,接收器操作特征(ROC)曲线和ROC曲线(AUC)下的区域进行评估,评估我们的模型。结果:具有VGG16_BN的最佳性DL-CNB模型作为特征提取器实现了0.816的AUC(95%置信区间(CI):0.758,0.865),以预测独立测试队列的阳性Aln转移。此外,我们的模型包含称为DL-CNB + C的临床数据,得到了0.831的最佳精度(95%CI:0.775,0.878),特别是对于50岁以下的患者(AUC:0.918,95%CI: 0.825,0.971)。 DL-CNB模型的解释表明,最高度预测ALN转移的顶部签名的特征在于包括密度($ P $ 0.015),周长($ P $ 0.009),循环($ P $ = 0.010)和方向($ p $ = 0.012)。结论:我们的研究提供了一种基于DL的基于DL的生物标志物在原发性肿瘤CNB上,以预先验证EBC患者的术前预测ALN的转移状态。
translated by 谷歌翻译
在许多现实世界应用中,可靠的概率估计在具有固有的不确定性的许多现实应用中至关重要,例如天气预报,医疗预后或自动车辆的碰撞避免。概率估计模型培训观察到的结果(例如,它是否已下雨,或者是否患者是否已死亡),因为感兴趣事件的地面真理概率通常是未知的。因此,问题类似于二进制分类,具有重要差异,即目标是估计概率而不是预测特定结果。这项工作的目标是使用深神经网络调查从高维数据的概率估计。存在几种方法来改善这些模型产生的概率,但它们主要专注于概率与模型不确定性相关的分类问题。在具有固有的不确定性问题的情况下,在没有访问地面概率的情况下评估性能有挑战性。要解决此问题,我们构建一个合成数据集以学习和比较不同的可计算度量。我们评估了合成数据以及三个现实世界概率估计任务的现有方法,所有这些方法都涉及固有的不确定性:从雷达图像的降水预测,从组织病理学图像预测癌症患者存活,并预测从Dashcam视频预测车祸。最后,我们还提出了一种使用神经网络的概率估计的新方法,该方法修改了培训过程,促进了与从数据计算的经验概率一致的输出概率。该方法优于模拟和真实数据上大多数度量的现有方法。
translated by 谷歌翻译
骨肉瘤是最常见的原发性骨癌,其标准治疗包括术前化疗,然后切除。化学疗法反应用于预测患者的预后和进一步治疗。坏死在切除标本上的组织学幻灯片通常评估了坏死比定义为坏死肿瘤与总体肿瘤之比。已知坏死比> = 90%的患者的预后更好。多个载玻片对坏死比的手动微观综述是半定量性的,并且可能具有观察者间和观察者间的变异性。我们提出了一种基于目标和可再现的深度学习方法,以估计坏死比,并从扫描的苏木精和曙红全幻灯片图像预测结果。我们以3134个WSI的速度收集了103例骨肉瘤病例,以训练我们的深度学习模型,验证坏死比评估并评估结果预测。我们训练了深层多磁化网络,以分割多个组织亚型,包括生存的肿瘤和像素级中的坏死肿瘤,并计算来自多个WSI的病例级坏死比。我们显示了通过分割模型估算的坏死比,高度与由专家手动评估的病理报告中的坏死比高度相关,其中IV级的平均绝对差异(100%),III(> = 90%)和II(> = 50%和<50%和< 90%)坏死反应分别为4.4%,4.5%和17.8%。我们成功地对患者进行了分层,以预测P = 10^-6的总生存率,而P = 0.012的无进展生存率。我们没有可变性的可重现方法使我们能够调整截止阈值,特别是用于模型和数据集的截止阈值,为OS的80%,PFS为60%。我们的研究表明,深度学习可以支持病理学家作为一种客观的工具,可以分析组织学中骨肉瘤,以评估治疗反应并预测患者结果。
translated by 谷歌翻译
监督的学习任务,例如GigaiPixel全幻灯片图像(WSIS)等癌症存活预测是计算病理学中的关键挑战,需要对肿瘤微环境的复杂特征进行建模。这些学习任务通常通过不明确捕获肿瘤内异质性的深层多企业学习(MIL)模型来解决。我们开发了一种新颖的差异池体系结构,使MIL模型能够将肿瘤内异质性纳入其预测中。说明了基于代表性补丁的两个可解释性工具,以探测这些模型捕获的生物学信号。一项针对癌症基因组图集的4,479吉普像素WSI的实证研究表明,在MIL框架上增加方差汇总可改善五种癌症类型的生存预测性能。
translated by 谷歌翻译
肺癌是全球癌症死亡的主要原因,肺腺癌是最普遍的肺癌形式。 EGFR阳性肺腺癌已被证明对TKI治疗的反应率很高,这是肺癌分子测试的基本性质。尽管目前的指南考虑必要测试,但很大一部分患者并未常规化,导致数百万的人未接受最佳治疗肺癌。测序是EGFR突变分子测试的黄金标准,但是结果可能需要数周的时间才能回来,这在时间限制的情况下并不理想。能够快速,便宜地检测EGFR突变的替代筛查工具的开发,同时保存组织以进行测序可以帮助减少受比较治疗的患者的数量。我们提出了一种多模式方法,该方法将病理图像和临床变量整合在一起,以预测EGFR突变状态,迄今为止最大的临床队列中的AUC为84%。这样的计算模型可以以很少的额外成本进行大部分部署。它的临床应用可以减少中国接受亚最佳治疗的患者数量53.1%,在美国将高达96.6%的患者减少96.6%。
translated by 谷歌翻译
用于生存预测的深层神经网络在歧视方面超过了经典方法,这是患者根据事件的秩序。相反,诸如COX比例危害模型之类的经典方法显示出更好的校准,即对基础分布事件的正确时间预测。特别是在医学领域,预测单个患者的存活至关重要,歧视和校准都是重要的绩效指标。在这里,我们提出了离散的校准生存(DC),这是一个新型的深层神经网络,用于歧视和校准的生存预测,在三个医疗数据集的歧视中优于竞争生存模型,同时在所有离散时间模型中实现最佳校准。 DC的增强性能可以归因于两个新型功能,即可变的时间输出节点间距和新颖的损耗项,可优化未经审查和审查的患者数据的使用。我们认为,DCS是临床应用基于深度学习的生存预测和良好校准的重要一步。
translated by 谷歌翻译
目的:基于深度学习的放射素学(DLR)在医学图像分析中取得了巨大的成功,并被认为是依赖手工特征的常规放射线学的替代。在这项研究中,我们旨在探索DLR使用预处理PET/CT预测鼻咽癌(NPC)中5年无进展生存期(PFS)的能力。方法:总共招募了257名患者(内部/外部队列中的170/87),具有晚期NPC(TNM III期或IVA)。我们开发了一个端到端的多模式DLR模型,其中优化了3D卷积神经网络以从预处理PET/CT图像中提取深度特征,并预测了5年PFS的概率。作为高级临床特征,TNM阶段可以集成到我们的DLR模型中,以进一步提高预后性能。为了比较常规放射素学和DLR,提取了1456个手工制作的特征,并从54种特征选择方法和9种分类方法的54个交叉组合中选择了最佳常规放射线方法。此外,使用临床特征,常规放射线学签名和DLR签名进行风险组分层。结果:我们使用PET和CT的多模式DLR模型比最佳常规放射线方法获得了更高的预后性能。此外,多模式DLR模型仅使用PET或仅CT优于单模式DLR模型。对于风险组分层,常规的放射线学签名和DLR签名使内部和外部队列中的高风险患者群体之间有显着差异,而外部队列中的临床特征则失败。结论:我们的研究确定了高级NPC中生存预测的潜在预后工具,表明DLR可以为当前TNM分期提供互补值。
translated by 谷歌翻译
Real-time individual endpoint prediction has always been a challenging task but of great clinic utility for both patients and healthcare providers. With 6,879 chronic kidney disease stage 4 (CKD4) patients as a use case, we explored the feasibility and performance of gated recurrent units with decay that models Weibull probability density function (GRU-D-Weibull) as a semi-parametric longitudinal model for real-time individual endpoint prediction. GRU-D-Weibull has a maximum C-index of 0.77 at 4.3 years of follow-up, compared to 0.68 achieved by competing models. The L1-loss of GRU-D-Weibull is ~66% of XGB(AFT), ~60% of MTLR, and ~30% of AFT model at CKD4 index date. The average absolute L1-loss of GRU-D-Weibull is around one year, with a minimum of 40% Parkes serious error after index date. GRU-D-Weibull is not calibrated and significantly underestimates true survival probability. Feature importance tests indicate blood pressure becomes increasingly important during follow-up, while eGFR and blood albumin are less important. Most continuous features have non-linear/parabola impact on predicted survival time, and the results are generally consistent with existing knowledge. GRU-D-Weibull as a semi-parametric temporal model shows advantages in built-in parameterization of missing, native support for asynchronously arrived measurement, capability of output both probability and point estimates at arbitrary time point for arbitrary prediction horizon, improved discrimination and point estimate accuracy after incorporating newly arrived data. Further research on its performance with more comprehensive input features, in-process or post-process calibration are warranted to benefit CKD4 or alike terminally-ill patients.
translated by 谷歌翻译
生存分析是事实建模的艺术,在临床治疗决策中起着重要作用。最近,已经提出了由神经ODE建立的连续时间模型进行生存分析。然而,由于神经ODE求解器的计算复杂性很高,神经ODE的训练很慢。在这里,我们提出了一种有效的替代方案,用于柔性连续时间模型,称为生存混合物密度网络(生存MDN)。生存MDN适用于混合密度网络(MDN)的输出的可逆阳性功能。尽管MDN产生灵活的实价分布,但可逆正函数将模型映射到时间域,同时保留可拖动密度。使用四个数据集,我们表明生存MDN的性能优于或类似于一致性的连续和离散时间基准,集成的brier得分和集成的二项式对数可能性。同时,生存MDN的速度也比基于ODE的模型和离散模型中规避的分类问题快。
translated by 谷歌翻译
在本文中,我们提出了一种使用神经网络的生存分析模型,以及可伸缩优化算法。直接应用最大似然估计(MLE)缩短数据的一个关键技术挑战是评估目标函数及其梯度相对于模型参数需要计算积分。为了解决这一挑战,我们认识到,可以将用于审查数据的MEE视为差分方程约束优化问题,这是一种新颖的视角。在此连接之后,我们通过普通微分方程模拟事件时间的分布,并利用有效的颂歌求解器并伴随敏感性分析来数值评估可能性和梯度。使用这种方法,我们能够1)提供广泛的连续时间存活分布,无需强大的结构假设,2)使用神经网络获得强大的特征表示,3)允许在大规模应用中使用模型估计模型随机梯度下降。通过仿真研究和现实世界数据示例,我们展示了所提出的方法与现有的最先进的深度学习生存分析模型相比的有效性。已在HTTPS://github.com/Jiaqima/soden公开提供拟议的SODEN方法。
translated by 谷歌翻译
从电子健康记录(EHR)数据中进行有效学习来预测临床结果,这通常是具有挑战性的,因为在不规则的时间段记录的特征和随访的损失以及竞争性事件(例如死亡或疾病进展)。为此,我们提出了一种生成的事实模型,即Survlatent Ode,该模型采用了基于基于微分方程的复发性神经网络(ODE-RNN)作为编码器,以有效地对不规则采样的输入数据进行潜在状态的动力学有效地参数化。然后,我们的模型利用所得的潜在嵌入来灵活地估计多个竞争事件的生存时间,而无需指定事件特定危害功能的形状。我们展示了我们在Mimic-III上的竞争性能,这是一种从重症监护病房收集的自由纵向数据集,预测医院死亡率以及DANA-FARBER癌症研究所(DFCI)的数据,以预测静脉血栓症(静脉血栓症(DFCI)(DFCI)( VTE),是癌症患者的生命并发症,死亡作为竞争事件。幸存ODE优于分层VTE风险组的当前临床标准Khorana风险评分,同时提供临床上有意义且可解释的潜在表示。
translated by 谷歌翻译