监督的学习任务,例如GigaiPixel全幻灯片图像(WSIS)等癌症存活预测是计算病理学中的关键挑战,需要对肿瘤微环境的复杂特征进行建模。这些学习任务通常通过不明确捕获肿瘤内异质性的深层多企业学习(MIL)模型来解决。我们开发了一种新颖的差异池体系结构,使MIL模型能够将肿瘤内异质性纳入其预测中。说明了基于代表性补丁的两个可解释性工具,以探测这些模型捕获的生物学信号。一项针对癌症基因组图集的4,479吉普像素WSI的实证研究表明,在MIL框架上增加方差汇总可改善五种癌症类型的生存预测性能。
translated by 谷歌翻译
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical. Previous studies employ multiple instance learning (MIL) to represent WSIs as bags of sampled patches because, for most occasions, only slide-level labels are available, and only a tiny region of the WSI is disease-positive area. However, WSI representation learning still remains an open problem due to: (1) patch sampling on a higher resolution may be incapable of depicting microenvironment information such as the relative position between the tumor cells and surrounding tissues, while patches at lower resolution lose the fine-grained detail; (2) extracting patches from giant WSI results in large bag size, which tremendously increases the computational cost. To solve the problems, this paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes. Precisely, we randomly extract instant-level patch features from WSIs with different magnification. Then a co-attention mapping between imaging and genomics is learned to uncover the pairwise interaction and reduce the space complexity of imaging features. Such early fusion makes it computationally feasible to use MIL Transformer for the survival prediction task. Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability. We evaluate our approach on five cancer types from the Cancer Genome Atlas database and achieved an average c-index of $0.673$, outperforming the state-of-the-art multimodality methods.
translated by 谷歌翻译
已经开发了几种深度学习算法,以使用整个幻灯片图像(WSIS)预测癌症患者的存活。但是,WSI中与患者的生存和疾病进展有关的WSI中的图像表型对临床医生而言都是困难的,以及深度学习算法。用于生存预测的大多数基于深度学习的多个实例学习(MIL)算法使用顶级实例(例如Maxpooling)或顶级/底部实例(例如,Mesonet)来识别图像表型。在这项研究中,我们假设WSI中斑块得分分布的全面信息可以更好地预测癌症的生存。我们开发了一种基于分布的多构度生存学习算法(DeepDismisl)来验证这一假设。我们使用两个大型国际大型癌症WSIS数据集设计和执行实验-MCO CRC和TCGA Coad -Read。我们的结果表明,有关WSI贴片分数的分布的信息越多,预测性能越好。包括每个选定分配位置(例如百分位数)周围的多个邻域实例可以进一步改善预测。与最近发表的最新算法相比,DeepDismisl具有优越的预测能力。此外,我们的算法是可以解释的,可以帮助理解癌症形态表型与癌症生存风险之间的关系。
translated by 谷歌翻译
Attention-based multiple instance learning (AMIL) algorithms have proven to be successful in utilizing gigapixel whole-slide images (WSIs) for a variety of different computational pathology tasks such as outcome prediction and cancer subtyping problems. We extended an AMIL approach to the task of survival prediction by utilizing the classical Cox partial likelihood as a loss function, converting the AMIL model into a nonlinear proportional hazards model. We applied the model to tissue microarray (TMA) slides of 330 lung cancer patients. The results show that AMIL approaches can handle very small amounts of tissue from a TMA and reach similar C-index performance compared to established survival prediction methods trained with highly discriminative clinical factors such as age, cancer grade, and cancer stage
translated by 谷歌翻译
Gigapixel全斜面图像(WSIS)上的癌症预后一直是一项艰巨的任务。大多数现有方法仅着眼于单分辨率图像。利用图像金字塔增强WSI视觉表示的多分辨率方案尚未得到足够的关注。为了探索用于提高癌症预后准确性的多分辨率解决方案,本文提出了双流构建结构,以通过图像金字塔策略对WSI进行建模。该体系结构由两个子流组成:一个是用于低分辨率WSIS,另一个是针对高分辨率的WSIS。与其他方法相比,我们的方案具有三个亮点:(i)流和分辨率之间存在一对一的关系; (ii)添加了一个平方池层以对齐两个分辨率流的斑块,从而大大降低了计算成本并启用自然流特征融合; (iii)提出了一种基于跨注意的方法,以在低分辨率的指导下在空间上在空间上进行高分辨率斑块。我们验证了三个公共可用数据集的计划,来自1,911名患者的总数为3,101个WSI。实验结果验证(1)层次双流表示比单流的癌症预后更有效,在单个低分辨率和高分辨率流中,平均C-指数上升为5.0%和1.8% ; (2)我们的双流方案可以胜过当前最新方案,而C-Index的平均平均值为5.1%; (3)具有可观察到的生存差异的癌症疾病可能对模型复杂性具有不同的偏好。我们的计划可以作为进一步促进WSI预后研究的替代工具。
translated by 谷歌翻译
数据分析方法的组合,提高计算能力和改进的传感器可以实现定量颗粒状,基于细胞的分析。我们描述了与组织解释和调查AI方法有关的丰富应用挑战集,目前用于应对这些挑战。我们专注于一类针对性的人体组织分析 - 组织病理学 - 旨在定量表征疾病状态,患者结果预测和治疗转向。
translated by 谷歌翻译
Molecular and genomic properties are critical in selecting cancer treatments to target individual tumors, particularly for immunotherapy. However, the methods to assess such properties are expensive, time-consuming, and often not routinely performed. Applying machine learning to H&E images can provide a more cost-effective screening method. Dozens of studies over the last few years have demonstrated that a variety of molecular biomarkers can be predicted from H&E alone using the advancements of deep learning: molecular alterations, genomic subtypes, protein biomarkers, and even the presence of viruses. This article reviews the diverse applications across cancer types and the methodology to train and validate these models on whole slide images. From bottom-up to pathologist-driven to hybrid approaches, the leading trends include a variety of weakly supervised deep learning-based approaches, as well as mechanisms for training strongly supervised models in select situations. While results of these algorithms look promising, some challenges still persist, including small training sets, rigorous validation, and model explainability. Biomarker prediction models may yield a screening method to determine when to run molecular tests or an alternative when molecular tests are not possible. They also create new opportunities in quantifying intratumoral heterogeneity and predicting patient outcomes.
translated by 谷歌翻译
针对组织病理学图像数据的临床决策支持主要侧重于强烈监督的注释,这提供了直观的解释性,但受专业表现的束缚。在这里,我们提出了一种可解释的癌症复发预测网络(Ecarenet),并表明没有强注释的端到端学习提供最先进的性能,而可以通过注意机制包括可解释性。在前列腺癌生存预测的用例上,使用14,479个图像和仅复发时间作为注释,我们在验证集中达到0.78的累积动态AUC,与专家病理学家(以及在单独测试中的AUC为0.77放)。我们的模型是良好的校准,输出生存曲线以及每位患者的风险分数和群体。利用多实例学习层的注意重量,我们表明恶性斑块对预测的影响较高,从而提供了对预测的直观解释。我们的代码可在www.github.com/imsb-uke/ecarenet上获得。
translated by 谷歌翻译
The survival analysis on histological whole-slide images (WSIs) is one of the most important means to estimate patient prognosis. Although many weakly-supervised deep learning models have been developed for gigapixel WSIs, their potential is generally restricted by classical survival analysis rules and fully-supervision requirements. As a result, these models provide patients only with a completely-certain point estimation of time-to-event, and they could only learn from the well-annotated WSI data currently at a small scale. To tackle these problems, we propose a novel adversarial multiple instance learning (AdvMIL) framework. This framework is based on adversarial time-to-event modeling, and it integrates the multiple instance learning (MIL) that is much necessary for WSI representation learning. It is a plug-and-play one, so that most existing WSI-based models with embedding-level MIL networks can be easily upgraded by applying this framework, gaining the improved ability of survival distribution estimation and semi-supervised learning. Our extensive experiments show that AdvMIL could not only bring performance improvement to mainstream WSI models at a relatively low computational cost, but also enable these models to learn from unlabeled data with semi-supervised learning. Our AdvMIL framework could promote the research of time-to-event modeling in computational pathology with its novel paradigm of adversarial MIL.
translated by 谷歌翻译
组织病理学图像提供了癌症诊断的明确来源,其中包含病理学家用来识别和分类恶性疾病的信息,并指导治疗选择。这些图像包含大量信息,其中大部分目前不可用人类的解释。有监督的深度学习方法对于分类任务非常有力,但它们本质上受注释的成本和质量限制。因此,我们开发了组织形态表型学习,这是一种无监督的方法,它不需要注释,并且通过小图像瓷砖中的歧视性图像特征的自我发现进行操作。瓷砖分为形态上相似的簇,这些簇似乎代表了自然选择下出现的肿瘤生长的复发模式。这些簇具有不同的特征,可以使用正交方法识别。应用于肺癌组织,我们表明它们与患者的结局紧密保持一致,组织病理学识别的肿瘤类型和生长模式以及免疫表型的转录组度量。
translated by 谷歌翻译
Gigapixel Medical图像提供了大量的数据,包括形态学纹理和空间信息。由于组织学的数据量表较大,​​深度学习方法作为特征提取器起着越来越重要的作用。现有的解决方案在很大程度上依赖卷积神经网络(CNN)进行全局像素级分析,从而使潜在的局部几何结构(例如肿瘤微环境中的细胞之间的相互作用均未探索。事实证明,医学图像中的拓扑结构与肿瘤进化密切相关,可以很好地表征图。为了获得下游肿瘤学任务的更全面的表示,我们提出了一个融合框架,以增强CNN捕获的全局图像级表示,并使用图形神经网络(GNN)学习的细胞级空间信息的几何形状。融合层优化了全局图像和单元图的协作特征之间的集成。已经开发了两种融合策略:一种具有MLP的融合策略,这很简单,但通过微调而有效,而Transformer获得了融合多个网络的冠军。我们评估了从大型患者群体和胃癌策划的组织学数据集中的融合策略,以完成三个生物标志物预测任务。两种型号的表现都优于普通CNN或GNN,在各种网络骨架上达到了超过5%的AUC提高。实验结果在医学图像分析中将图像水平的形态特征与细胞空间关系相结合的必要性。代码可在https://github.com/yiqings/hegnnenhancecnn上找到。
translated by 谷歌翻译
多个实例学习(MIL)方法在数字病理学中对GIGA像素大小的全型图像(WSI)进行分类变得越来越流行。大多数MIL方法通过处理所有组织斑块,以单个WSI放大倍率运行。这样的公式诱导了高计算要求,并将WSI级表示的上下文化限制为单个量表。一些MIL方法扩展到多个量表,但在计算上要求更高。在本文中,受病理诊断过程的启发,我们提出了Zoommil,该方法学会了以端到端的方式执行多层缩放。Zoommil通过从多个增强元中汇总组织信息来构建WSI表示。所提出的方法在两个大数据集上的WSI分类中优于最先进的MIL方法,同时大大降低了关于浮点操作(FLOPS)和处理时间的计算需求,最高为40倍。
translated by 谷歌翻译
There exists unexplained diverse variation within the predefined colon cancer stages using only features either from genomics or histopathological whole slide images as prognostic factors. Unraveling this variation will bring about improved in staging and treatment outcome, hence motivated by the advancement of Deep Neural Network libraries and different structures and factors within some genomic dataset, we aggregate atypical patterns in histopathological images with diverse carcinogenic expression from mRNA, miRNA and DNA Methylation as an integrative input source into an ensemble deep neural network for colon cancer stages classification and samples stratification into low or high risk survival groups. The results of our Ensemble Deep Convolutional Neural Network model show an improved performance in stages classification on the integrated dataset. The fused input features return Area under curve Receiver Operating Characteristic curve (AUC ROC) of 0.95 compared with AUC ROC of 0.71 and 0.68 obtained when only genomics and images features are used for the stage's classification, respectively. Also, the extracted features were used to split the patients into low or high risk survival groups. Among the 2548 fused features, 1695 features showed a statistically significant survival probability differences between the two risk groups defined by the extracted features.
translated by 谷歌翻译
多实例学习(MIL)是整个幻灯片图像(WSI)分类的关键算法。组织学WSIS可以具有数十亿像素,它创造了巨大的计算和注释挑战。通常,这种图像被分成一组贴片(一袋实例),其中仅提供袋级类标签。基于深度学习的MIL方法使用卷积神经网络(CNN)计算实例特征。我们所提出的方法也是基于深度学习的,随着以下两项贡献例如,肿瘤等级可以取决于WSI中不同位置的几种特定模式的存在,这需要考虑贴片之间的依赖性。其次,我们提出了基于实例伪标签的实例 - 明智函数。我们将所提出的算法与多个基线方法进行比较,在熊猫挑战数据集上评估它,该数据集是超过11K图像的最大可用的WSI数据集,并展示最先进的结果。
translated by 谷歌翻译
组织病理学图像包含丰富的表型信息和病理模式,这是疾病诊断的黄金标准,对于预测患者预后和治疗结果至关重要。近年来,在临床实践中迫切需要针对组织病理学图像的计算机自动化分析技术,而卷积神经网络代表的深度学习方法已逐渐成为数字病理领域的主流。但是,在该领域获得大量细粒的注释数据是一项非常昂贵且艰巨的任务,这阻碍了基于大量注释数据的传统监督算法的进一步开发。最新的研究开始从传统的监督范式中解放出来,最有代表性的研究是基于弱注释,基于有限的注释的半监督学习范式以及基于自我监督的学习范式的弱监督学习范式的研究图像表示学习。这些新方法引发了针对注释效率的新自动病理图像诊断和分析。通过对130篇论文的调查,我们对从技术和方法论的角度来看,对计算病理学领域中有关弱监督学习,半监督学习以及自我监督学习的最新研究进行了全面的系统综述。最后,我们提出了这些技术的关键挑战和未来趋势。
translated by 谷歌翻译
动机:癌症是异质的,影响了个性化治疗的精确方法。准确的亚型可以导致癌症患者的生存率更好。高通量技术为癌症亚型提供了多个OMIC数据。但是,由于OMICS数据的大量和高维度,精确的癌症亚型仍然具有挑战性。结果:这项研究提出了基于MLP和变压器块的深度学习方法拟议的亚型形式,以提取多摩学数据的低维表示。 K-均值和共识聚类也用于获得准确的亚型结果。我们比较了TCGA 10癌症类型的其他最先进的亚型方法。我们发现,基于生存分析,亚型形式可以在5000多个肿瘤的基准数据集上表现更好。此外,亚型形式还取得了泛滥亚型的出色结果,这可以帮助分析分子水平上各种癌症类型的共同点和差异。最后,我们将亚型格式应用于TCGA 10类型的癌症。我们确定了50种基本生物标志物,可用于研究靶向癌症药物并促进精密医学时代的癌症治疗。
translated by 谷歌翻译
病理诊所中癌症的诊断,预后和治疗性决策现在可以基于对多吉吉像素组织图像的分析,也称为全斜图像(WSIS)。最近,已经提出了深层卷积神经网络(CNN)来得出无监督的WSI表示。这些很有吸引力,因为它们不太依赖于繁琐的专家注释。但是,一个主要的权衡是,较高的预测能力通常以解释性为代价,这对他们的临床使用构成了挑战,通常通常期望决策中的透明度。为了应对这一挑战,我们提出了一个基于Deep CNN的手工制作的框架,用于构建整体WSI级表示。基于有关变压器在自然语言处理领域的内部工作的最新发现,我们将其过程分解为一个更透明的框架,我们称其为手工制作的组织学变压器或H2T。基于我们涉及各种数据集的实验,包括总共5,306个WSI,结果表明,与最近的最新方法相比,基于H2T的整体WSI级表示具有竞争性能,并且可以轻松用于各种下游分析任务。最后,我们的结果表明,H2T框架的最大14倍,比变压器模型快14倍。
translated by 谷歌翻译
Motivation: The size of available omics datasets is steadily increasing with technological advancement in recent years. While this increase in sample size can be used to improve the performance of relevant prediction tasks in healthcare, models that are optimized for large datasets usually operate as black boxes. In high stakes scenarios, like healthcare, using a black-box model poses safety and security issues. Without an explanation about molecular factors and phenotypes that affected the prediction, healthcare providers are left with no choice but to blindly trust the models. We propose a new type of artificial neural networks, named Convolutional Omics Kernel Networks (COmic). By combining convolutional kernel networks with pathway-induced kernels, our method enables robust and interpretable end-to-end learning on omics datasets ranging in size from a few hundred to several hundreds of thousands of samples. Furthermore, COmic can be easily adapted to utilize multi-omics data. Results: We evaluate the performance capabilities of COmic on six different breast cancer cohorts. Additionally, we train COmic models on multi-omics data using the METABRIC cohort. Our models perform either better or similar to competitors on both tasks. We show how the use of pathway-induced Laplacian kernels opens the black-box nature of neural networks and results in intrinsically interpretable models that eliminate the need for \textit{post-hoc} explanation models.
translated by 谷歌翻译
目的:开发和验证基于临床阴性ALN的早期乳腺癌(EBC)术后预测腋窝淋巴结(ALN)转移的深度学习(DL)的主要肿瘤活检签名。方法:从2010年5月到2020年5月,共注册了1,058名具有病理证实ALN状态的eBC患者。基于关注的多实例学习(AMIL)框架,建立了一种DL核心针活检(DL-CNB)模型利用DL特征预测ALN状态,该DL特征从两位病理学家注释的乳腺CNB样本的数字化全幻灯片(WSIS)的癌症区域提取。分析了准确性,灵敏度,特异性,接收器操作特征(ROC)曲线和ROC曲线(AUC)下的区域进行评估,评估我们的模型。结果:具有VGG16_BN的最佳性DL-CNB模型作为特征提取器实现了0.816的AUC(95%置信区间(CI):0.758,0.865),以预测独立测试队列的阳性Aln转移。此外,我们的模型包含称为DL-CNB + C的临床数据,得到了0.831的最佳精度(95%CI:0.775,0.878),特别是对于50岁以下的患者(AUC:0.918,95%CI: 0.825,0.971)。 DL-CNB模型的解释表明,最高度预测ALN转移的顶部签名的特征在于包括密度($ P $ 0.015),周长($ P $ 0.009),循环($ P $ = 0.010)和方向($ p $ = 0.012)。结论:我们的研究提供了一种基于DL的基于DL的生物标志物在原发性肿瘤CNB上,以预先验证EBC患者的术前预测ALN的转移状态。
translated by 谷歌翻译
癌症存活预测对于开发个性化治疗和诱导疾病的机制很重要。多词数据的数据整合吸引了人们对癌症研究的广泛兴趣,以提供了解多个遗传水平的癌症进展的信息。然而,由于多派数据的高维和异质性,许多作品受到限制。在本文中,我们提出了一种新的方法,以整合癌症生存预测的多摩学数据,称为堆叠自动编码器的生存预测神经网络(SAESURV-NET)。在TCGA病例的癌症存活预测中,SaesURV-NET通过两阶段的降低策略来解决维数的诅咒,并使用堆叠的自动编码器模型处理多摩斯的异质性。两阶段的降低策略在计算复杂性和信息开发之间取得了平衡。堆叠的自动编码器模型删除了大多数异质性,例如第一组自动编码器中的数据类型和大小,并将多个OMICS数据集成在第二个自动编码器中。该实验表明,SAESURV-NET优于基于单一类型数据以及其他最先进方法的模型。
translated by 谷歌翻译