虽然视觉模仿学习提供了从视觉演示中学习最有效的方法之一,但从它们中概括需要数百个不同的演示,任务特定的前瞻或大型难以列车的参数模型。此类复杂性出现的一个原因是因为标准的视觉模仿框架尝试一次解决两个耦合问题:从不同的视觉数据中学习简洁但良好的表示,同时学习将显示的动作与这样的表示相关联。这种联合学习导致这两个问题之间的相互依存,这通常会导致需要大量的学习演示。为了解决这一挑战,我们建议与对视觉模仿的行为学习的表现脱钩。首先,我们使用标准监督和自我监督的学习方法从离线数据中学习视觉表示编码器。培训表示,我们使用非参数局部加权回归来预测动作。我们通过实验表明,与目视模仿的先前工作相比,这种简单的去耦可提高离线演示数据集和实际机器人门开口的视觉模仿模型的性能。我们所有生成的数据,代码和机器人视频都在https://jyopari.github.io/vinn/处公开提供。
translated by 谷歌翻译
尽管行为学习近期取得了令人印象深刻的进步,但由于无法利用大型,人类生成的数据集,它落后于计算机视觉和自然语言处理。人类的行为具有较大的差异,多种模式和人类的示范通常不带有奖励标签。这些属性限制了当前方法在离线RL和行为克隆中的适用性,以从大型预收取的数据集中学习。在这项工作中,我们提出了行为变压器(BET),这是一种用多种模式建模未标记的演示数据的新技术。 BET翻新带有动作离散化的标准变压器体系结构,再加上受对象检测中偏移预测启发的多任务动作校正。这使我们能够利用现代变压器的多模式建模能力来预测多模式的连续动作。我们通过实验评估了各种机器人操作和自动驾驶行为数据集的赌注。我们表明,BET可以显着改善以前的最新工作解决方案,同时捕获预采用的数据集中存在的主要模式。最后,通过一项广泛的消融研究,我们分析了BET中每个关键成分的重要性。 BET生成的行为视频可在https://notmahi.github.io/bet上获得
translated by 谷歌翻译
我们调查视觉跨实施的模仿设置,其中代理商学习来自其他代理的视频(例如人类)的策略,示范相同的任务,但在其实施例中具有缺点差异 - 形状,动作,终效应器动态等。在这项工作中,我们证明可以从对这些差异强大的跨实施例证视频自动发现和学习基于视觉的奖励功能。具体而言,我们介绍了一种用于跨实施的跨实施的自我监督方法(XIRL),它利用时间周期 - 一致性约束来学习深度视觉嵌入,从而从多个专家代理的示范的脱机视频中捕获任务进度,每个都执行相同的任务不同的原因是实施例差异。在我们的工作之前,从自我监督嵌入产生奖励通常需要与参考轨迹对齐,这可能难以根据STARK实施例的差异来获取。我们凭经验显示,如果嵌入式了解任务进度,则只需在学习的嵌入空间中占据当前状态和目标状态之间的负距离是有用的,作为培训与加强学习的培训政策的奖励。我们发现我们的学习奖励功能不仅适用于在训练期间看到的实施例,而且还概括为完全新的实施例。此外,在将现实世界的人类示范转移到模拟机器人时,我们发现XIRL比当前最佳方法更具样本。 https://x-irl.github.io提供定性结果,代码和数据集
translated by 谷歌翻译
While large-scale sequence modeling from offline data has led to impressive performance gains in natural language and image generation, directly translating such ideas to robotics has been challenging. One critical reason for this is that uncurated robot demonstration data, i.e. play data, collected from non-expert human demonstrators are often noisy, diverse, and distributionally multi-modal. This makes extracting useful, task-centric behaviors from such data a difficult generative modeling problem. In this work, we present Conditional Behavior Transformers (C-BeT), a method that combines the multi-modal generation ability of Behavior Transformer with future-conditioned goal specification. On a suite of simulated benchmark tasks, we find that C-BeT improves upon prior state-of-the-art work in learning from play data by an average of 45.7%. Further, we demonstrate for the first time that useful task-centric behaviors can be learned on a real-world robot purely from play data without any task labels or reward information. Robot videos are best viewed on our project website: https://play-to-policy.github.io
translated by 谷歌翻译
我们通过在野外观看人类来解决学习问题。尽管在现实世界中学习的传统方法和强化学习对于学习是有希望的,但它们要么是效率低下的样本,要么被限制在实验室环境中。同时,处理被动的,非结构化的人类数据已经取得了很大的成功。我们建议通过有效的一声机器人学习算法解决此问题,该算法围绕第三人称的角度学习。我们称我们的方法旋转:野生人类模仿机器人学习。旋转对人类演示者的意图提取先前,并使用它来初始化代理商的策略。我们介绍了一种有效的现实世界政策学习方案,该方案可以使用交互作用进行改进。我们的主要贡献是一种简单的基于抽样的策略优化方法,这是一种对齐人和机器人视频的新型目标功能,以及一种提高样本效率的探索方法。我们在现实世界中展示了单一的概括和成功,其中包括野外的20个不同的操纵任务。视频并在https://human2robot.github.io上进行交谈
translated by 谷歌翻译
To build general robotic agents that can operate in many environments, it is often imperative for the robot to collect experience in the real world. However, this is often not feasible due to safety, time, and hardware restrictions. We thus propose leveraging the next best thing as real-world experience: internet videos of humans using their hands. Visual priors, such as visual features, are often learned from videos, but we believe that more information from videos can be utilized as a stronger prior. We build a learning algorithm, VideoDex, that leverages visual, action, and physical priors from human video datasets to guide robot behavior. These actions and physical priors in the neural network dictate the typical human behavior for a particular robot task. We test our approach on a robot arm and dexterous hand-based system and show strong results on various manipulation tasks, outperforming various state-of-the-art methods. Videos at https://video-dex.github.io
translated by 谷歌翻译
无监督的表示学习的最新进展显着提高了模拟环境中培训强化学习政策的样本效率。但是,尚未看到针对实体强化学习的类似收益。在这项工作中,我们专注于从像素中启用数据有效的实体机器人学习。我们提出了有效的机器人学习(编码器)的对比前训练和数据增强,该方法利用数据增强和无监督的学习来从稀疏奖励中实现对实体ARM策略的样本效率培训。虽然对比预训练,数据增强,演示和强化学习不足以进行有效学习,但我们的主要贡献表明,这些不同技术的组合导致了一种简单而数据效率的方法。我们表明,只有10个示范,一个机器人手臂可以从像素中学习稀疏的奖励操纵策略,例如到达,拾取,移动,拉动大物体,翻转开关并在短短30分钟内打开抽屉现实世界训练时间。我们在项目网站上包括视频和代码:https://sites.google.com/view/felfficited-robotic-manipulation/home
translated by 谷歌翻译
通过直接互动环境中的直接交互自主学习行为的能力可以导致能够提高生产力或在非结构化环境中提供护理的通用机器人。这种无限量的设置仅需要使用机器人的壁虎搜索传感器,例如车载相机,联合编码器等,这可能是由于高维度和部分可观察性问题而挑战政策学习。我们提出RRL:RESNET作为强化学习的代表 - 这是一种直接且有效的方法,可以直接从丙虫精神投入学习复杂的行为。 RRL熔断器功能从预先培训的RESET中提取到标准强化学习管道中,并可直接从州的学习提供结果。在模拟的灵巧操纵基准测试中,在最先进方法无法进行重大进展情况下,RRL提供了富裕的行为。 RRL的上诉在于,从代表学习,模仿学习和加强学习领域汇集进步。它在直接从具有性能和采样效率匹配的视觉输入中直接从状态从状态匹配的效力,即使在复杂的高维域中也远未显而易见。
translated by 谷歌翻译
长摩根和包括一系列隐性子任务的日常任务仍然在离线机器人控制中构成了重大挑战。尽管许多先前的方法旨在通过模仿和离线增强学习的变体来解决这种设置,但学习的行为通常是狭窄的,并且经常努力实现可配置的长匹配目标。由于这两个范式都具有互补的优势和劣势,因此我们提出了一种新型的层次结构方法,结合了两种方法的优势,以从高维相机观察中学习任务无关的长胜压策略。具体而言,我们结合了一项低级政策,该政策通过模仿学习和从离线强化学习中学到的高级政策学习潜在的技能,以促进潜在的行为先验。各种模拟和真实机器人控制任务的实验表明,我们的配方使以前看不见的技能组合能够通过“缝制”潜在技能通过目标链条,并在绩效上提高绩效的顺序,从而实现潜在的目标。艺术基线。我们甚至还学习了一个多任务视觉运动策略,用于现实世界中25个不同的操纵任务,这既优于模仿学习和离线强化学习技术。
translated by 谷歌翻译
我们介绍了语言信息的潜在行动(LILA),这是在人机协作的背景下学习自然语言界面的框架。 Lila落在共享自主范式下:除了提供离散语言输入之外,人类还有低维控制器$ - 例如,可以向左/向右和向右移动2自由度(DOF)操纵杆$ - $操作机器人。 LILA学习使用语言来调制本控制器,为用户提供语言信息的控制空间:给定“将谷物碗放在托盘上的指示”,LILA可以学习一个二维空间,其中一个维度控制距离的距离机器人的末端执行器到碗,另一个维度控制机器人的末端效应器相对于碗上的抓地点。我们使用现实世界的用户学习评估LILA,用户可以在操作7 DOF法兰卡·埃米卡熊猫手臂时提供语言指导,以完成一系列复杂的操作任务。我们表明LILA模型不仅可以比仿制学习和终端效应器控制基线更高效,而且表现不变,但它们也是质疑优选的用户。
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
在现实世界中,教授多指的灵巧机器人在现实世界中掌握物体,这是一个充满挑战的问题,由于其高维状态和动作空间。我们提出了一个机器人学习系统,该系统可以进行少量的人类示范,并学会掌握在某些被遮挡的观察结果的情况下掌握看不见的物体姿势。我们的系统利用了一个小型运动捕获数据集,并为多指的机器人抓手生成具有多种多样且成功的轨迹的大型数据集。通过添加域随机化,我们表明我们的数据集提供了可以将其转移到策略学习者的强大抓地力轨迹。我们训练一种灵活的抓紧策略,该策略将对象的点云作为输入,并预测连续的动作以从不同初始机器人状态掌握对象。我们在模拟中评估了系统对22多伏的浮动手的有效性,并在现实世界中带有kuka手臂的23多杆Allegro机器人手。从我们的数据集中汲取的政策可以很好地概括在模拟和现实世界中的看不见的对象姿势
translated by 谷歌翻译
通过模仿学习(IL)使用用户提供的演示,或者通过使用大量的自主收集的体验来学习机器人技能。方法具有互补的经验和缺点:RL可以达到高度的性能,但需要缺陷,但是需要缺乏要求,但是需要达到高水平的性能,但需要达到高度的性能这可能非常耗时和不安全; IL不要求Xploration,但只学习与所提供的示范一样好的技能。一种方法将两种方法的优势结合在一起?一系列的方法旨在解决这个问题,提出了整合IL和RL的元素的各种技术。然而,扩大了这种方法,这些方法复杂的机器人技能,整合了不同的离线数据,概括到现实世界的情景仍然存在重大挑战。在本文中,USAIM是测试先前IL + RL算法的可扩展性,并设计了一种系统的详细实验实验,这些实验结合了现有的组件,其具有效果有效和可扩展的方式。为此,我们展示了一系列关于了解每个设计决定的影响的一系列实验,以便开发可以利用示范和异构的先前数据在一系列现实世界和现实的模拟问题上获得最佳表现的批准方法。我们通过致电Wap-opt的完整方法将优势加权回归[1,2]和QT-opt [3]结合在一起,提供了一个UnifiedAgveach,用于集成机器人操作的演示和离线数据。请参阅HTTPS: //awopt.github.io有关更多详细信息。
translated by 谷歌翻译
模仿学习在有效地学习政策方面对复杂的决策问题有着巨大的希望。当前的最新算法经常使用逆增强学习(IRL),在给定一组专家演示的情况下,代理会替代奖励功能和相关的最佳策略。但是,这种IRL方法通常需要在复杂控制问题上进行实质性的在线互动。在这项工作中,我们提出了正规化的最佳运输(ROT),这是一种新的模仿学习算法,基于最佳基于最佳运输轨迹匹配的最新进展。我们的主要技术见解是,即使只有少量演示,即使只有少量演示,也可以自适应地将轨迹匹配的奖励与行为克隆相结合。我们对横跨DeepMind Control Suite,OpenAI Robotics和Meta-World基准的20个视觉控制任务进行的实验表明,与先前最新的方法相比,平均仿真达到了90%的专家绩效的速度,达到了90%的专家性能。 。在现实世界的机器人操作中,只有一次演示和一个小时的在线培训,ROT在14个任务中的平均成功率为90.1%。
translated by 谷歌翻译
与人类在环境中共存的通用机器人必须学会将人类语言与其在一系列日常任务中有用的看法和行动联系起来。此外,他们需要获取各种曲目的一般专用技能,允许通过遵循无约束语言指示来组成长地平任务。在本文中,我们呈现了凯文(从语言和愿景撰写的行动),是一个露天模拟基准,用于学习Long-Horizo​​ n语言条件的任务。我们的目的是使可以开发能够通过船上传感器解决许多机器人操纵任务的代理商,并且仅通过人类语言指定。 Calvin任务在序列长度,动作空间和语言方面更复杂,而不是现有的视觉和语言任务数据集,并支持灵活的传感器套件规范。我们评估零拍摄的代理商以新颖的语言指示以及新的环境和对象。我们表明,基于多语境模仿学习的基线模型在凯文中表现不佳,表明有很大的空间,用于开发创新代理,了解学习将人类语言与这款基准相关的世界模型。
translated by 谷歌翻译
Developing robots that are capable of many skills and generalization to unseen scenarios requires progress on two fronts: efficient collection of large and diverse datasets, and training of high-capacity policies on the collected data. While large datasets have propelled progress in other fields like computer vision and natural language processing, collecting data of comparable scale is particularly challenging for physical systems like robotics. In this work, we propose a framework to bridge this gap and better scale up robot learning, under the lens of multi-task, multi-scene robot manipulation in kitchen environments. Our framework, named CACTI, has four stages that separately handle data collection, data augmentation, visual representation learning, and imitation policy training. In the CACTI framework, we highlight the benefit of adapting state-of-the-art models for image generation as part of the augmentation stage, and the significant improvement of training efficiency by using pretrained out-of-domain visual representations at the compression stage. Experimentally, we demonstrate that 1) on a real robot setup, CACTI enables efficient training of a single policy capable of 10 manipulation tasks involving kitchen objects, and robust to varying layouts of distractor objects; 2) in a simulated kitchen environment, CACTI trains a single policy on 18 semantic tasks across up to 50 layout variations per task. The simulation task benchmark and augmented datasets in both real and simulated environments will be released to facilitate future research.
translated by 谷歌翻译
Exploration in environments with sparse rewards has been a persistent problem in reinforcement learning (RL). Many tasks are natural to specify with a sparse reward, and manually shaping a reward function can result in suboptimal performance. However, finding a non-zero reward is exponentially more difficult with increasing task horizon or action dimensionality. This puts many real-world tasks out of practical reach of RL methods. In this work, we use demonstrations to overcome the exploration problem and successfully learn to perform long-horizon, multi-step robotics tasks with continuous control such as stacking blocks with a robot arm. Our method, which builds on top of Deep Deterministic Policy Gradients and Hindsight Experience Replay, provides an order of magnitude of speedup over RL on simulated robotics tasks. It is simple to implement and makes only the additional assumption that we can collect a small set of demonstrations. Furthermore, our method is able to solve tasks not solvable by either RL or behavior cloning alone, and often ends up outperforming the demonstrator policy.
translated by 谷歌翻译
学识渊博的视觉运动策略已取得了相当大的成功,作为用于机器人操纵的传统手工制作框架的替代方法。令人惊讶的是,这些方法向多视域域的扩展相对尚未探索。可以在移动操作平台上部署成功的多视策略,从而使机器人可以完成任务,无论其场景的看法如何。在这项工作中,我们证明可以通过从各种观点收集数据来通过模仿学习来找到多览策略。我们通过在模拟环境和真实的移动操纵平台上学习完成几个具有挑战性的多阶段和接触任务来说明该方法的一般适用性。此外,与从固定角度收集的数据相比,我们分析了我们的政策,以确定从多视图数据中学习的好处。我们表明,与使用等效量的固定视图数据相比,从多视图数据中学习对固定视图任务的惩罚很少(如果有的话)。最后,我们研究了多视图和固定视图策略所学的视觉特征。我们的结果表明,多视图策略隐含地学习识别与空间相关的特征。
translated by 谷歌翻译
变形金刚用大型数据集的扩展能力彻底改变了视力和自然语言处理。但是在机器人的操作中,数据既有限又昂贵。我们仍然可以从具有正确的问题制定的变压器中受益吗?我们用Peract进行了调查,这是一种用于多任务6 DOF操纵的语言条件的行为结合剂。 Peract用感知器变压器编码语言目标和RGB-D Voxel观测值,并通过“检测下一个最佳素素动作”来输出离散的动作。与在2D图像上运行的框架不同,体素化的观察和动作空间为有效学习的6-DOF策略提供了强大的结构性先验。通过此公式,我们训练一个单个多任务变压器,用于18个RLBench任务(具有249个变体)和7个现实世界任务(具有18个变体),从每个任务仅几个演示。我们的结果表明,针对各种桌面任务,佩内的磨损明显优于非结构化图像到作用剂和3D Convnet基准。
translated by 谷歌翻译