尽管行为学习近期取得了令人印象深刻的进步,但由于无法利用大型,人类生成的数据集,它落后于计算机视觉和自然语言处理。人类的行为具有较大的差异,多种模式和人类的示范通常不带有奖励标签。这些属性限制了当前方法在离线RL和行为克隆中的适用性,以从大型预收取的数据集中学习。在这项工作中,我们提出了行为变压器(BET),这是一种用多种模式建模未标记的演示数据的新技术。 BET翻新带有动作离散化的标准变压器体系结构,再加上受对象检测中偏移预测启发的多任务动作校正。这使我们能够利用现代变压器的多模式建模能力来预测多模式的连续动作。我们通过实验评估了各种机器人操作和自动驾驶行为数据集的赌注。我们表明,BET可以显着改善以前的最新工作解决方案,同时捕获预采用的数据集中存在的主要模式。最后,通过一项广泛的消融研究,我们分析了BET中每个关键成分的重要性。 BET生成的行为视频可在https://notmahi.github.io/bet上获得
translated by 谷歌翻译
While large-scale sequence modeling from offline data has led to impressive performance gains in natural language and image generation, directly translating such ideas to robotics has been challenging. One critical reason for this is that uncurated robot demonstration data, i.e. play data, collected from non-expert human demonstrators are often noisy, diverse, and distributionally multi-modal. This makes extracting useful, task-centric behaviors from such data a difficult generative modeling problem. In this work, we present Conditional Behavior Transformers (C-BeT), a method that combines the multi-modal generation ability of Behavior Transformer with future-conditioned goal specification. On a suite of simulated benchmark tasks, we find that C-BeT improves upon prior state-of-the-art work in learning from play data by an average of 45.7%. Further, we demonstrate for the first time that useful task-centric behaviors can be learned on a real-world robot purely from play data without any task labels or reward information. Robot videos are best viewed on our project website: https://play-to-policy.github.io
translated by 谷歌翻译
虽然视觉模仿学习提供了从视觉演示中学习最有效的方法之一,但从它们中概括需要数百个不同的演示,任务特定的前瞻或大型难以列车的参数模型。此类复杂性出现的一个原因是因为标准的视觉模仿框架尝试一次解决两个耦合问题:从不同的视觉数据中学习简洁但良好的表示,同时学习将显示的动作与这样的表示相关联。这种联合学习导致这两个问题之间的相互依存,这通常会导致需要大量的学习演示。为了解决这一挑战,我们建议与对视觉模仿的行为学习的表现脱钩。首先,我们使用标准监督和自我监督的学习方法从离线数据中学习视觉表示编码器。培训表示,我们使用非参数局部加权回归来预测动作。我们通过实验表明,与目视模仿的先前工作相比,这种简单的去耦可提高离线演示数据集和实际机器人门开口的视觉模仿模型的性能。我们所有生成的数据,代码和机器人视频都在https://jyopari.github.io/vinn/处公开提供。
translated by 谷歌翻译
长摩根和包括一系列隐性子任务的日常任务仍然在离线机器人控制中构成了重大挑战。尽管许多先前的方法旨在通过模仿和离线增强学习的变体来解决这种设置,但学习的行为通常是狭窄的,并且经常努力实现可配置的长匹配目标。由于这两个范式都具有互补的优势和劣势,因此我们提出了一种新型的层次结构方法,结合了两种方法的优势,以从高维相机观察中学习任务无关的长胜压策略。具体而言,我们结合了一项低级政策,该政策通过模仿学习和从离线强化学习中学到的高级政策学习潜在的技能,以促进潜在的行为先验。各种模拟和真实机器人控制任务的实验表明,我们的配方使以前看不见的技能组合能够通过“缝制”潜在技能通过目标链条,并在绩效上提高绩效的顺序,从而实现潜在的目标。艺术基线。我们甚至还学习了一个多任务视觉运动策略,用于现实世界中25个不同的操纵任务,这既优于模仿学习和离线强化学习技术。
translated by 谷歌翻译
Transformer, originally devised for natural language processing, has also attested significant success in computer vision. Thanks to its super expressive power, researchers are investigating ways to deploy transformers to reinforcement learning (RL) and the transformer-based models have manifested their potential in representative RL benchmarks. In this paper, we collect and dissect recent advances on transforming RL by transformer (transformer-based RL or TRL), in order to explore its development trajectory and future trend. We group existing developments in two categories: architecture enhancement and trajectory optimization, and examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving. For architecture enhancement, these methods consider how to apply the powerful transformer structure to RL problems under the traditional RL framework, which model agents and environments much more precisely than deep RL methods, but they are still limited by the inherent defects of traditional RL algorithms, such as bootstrapping and "deadly triad". For trajectory optimization, these methods treat RL problems as sequence modeling and train a joint state-action model over entire trajectories under the behavior cloning framework, which are able to extract policies from static datasets and fully use the long-sequence modeling capability of the transformer. Given these advancements, extensions and challenges in TRL are reviewed and proposals about future direction are discussed. We hope that this survey can provide a detailed introduction to TRL and motivate future research in this rapidly developing field.
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
变形金刚用大型数据集的扩展能力彻底改变了视力和自然语言处理。但是在机器人的操作中,数据既有限又昂贵。我们仍然可以从具有正确的问题制定的变压器中受益吗?我们用Peract进行了调查,这是一种用于多任务6 DOF操纵的语言条件的行为结合剂。 Peract用感知器变压器编码语言目标和RGB-D Voxel观测值,并通过“检测下一个最佳素素动作”来输出离散的动作。与在2D图像上运行的框架不同,体素化的观察和动作空间为有效学习的6-DOF策略提供了强大的结构性先验。通过此公式,我们训练一个单个多任务变压器,用于18个RLBench任务(具有249个变体)和7个现实世界任务(具有18个变体),从每个任务仅几个演示。我们的结果表明,针对各种桌面任务,佩内的磨损明显优于非结构化图像到作用剂和3D Convnet基准。
translated by 谷歌翻译
Humans intuitively solve tasks in versatile ways, varying their behavior in terms of trajectory-based planning and for individual steps. Thus, they can easily generalize and adapt to new and changing environments. Current Imitation Learning algorithms often only consider unimodal expert demonstrations and act in a state-action-based setting, making it difficult for them to imitate human behavior in case of versatile demonstrations. Instead, we combine a mixture of movement primitives with a distribution matching objective to learn versatile behaviors that match the expert's behavior and versatility. To facilitate generalization to novel task configurations, we do not directly match the agent's and expert's trajectory distributions but rather work with concise geometric descriptors which generalize well to unseen task configurations. We empirically validate our method on various robot tasks using versatile human demonstrations and compare to imitation learning algorithms in a state-action setting as well as a trajectory-based setting. We find that the geometric descriptors greatly help in generalizing to new task configurations and that combining them with our distribution-matching objective is crucial for representing and reproducing versatile behavior.
translated by 谷歌翻译
最近的工作表明,单独监督学习,没有时间差异(TD)学习,可以对离线RL显着有效。什么时候保持真实,需要哪些算法组件?通过广泛的实验,我们致力于将RL离线的监督学习到其基本要素。在我们考虑的每个环境套件中,只需通过双层前馈MLP最大化的可能性,与基于TD学习或与变压器的序列建模的基本更复杂的方法具有竞争力的竞争性。仔细选择模型容量(例如,通过正则化或架构),并选择哪些信息(例如,目标或奖励)对性能至关重要。这些见解是通过监督学习进行加强学习的从业者(我们投入“RVS学习”)的实践指南。他们还探讨了现有RVS方法的限制,在随机数据上相对较弱,并提出了许多打开问题。
translated by 谷歌翻译
我们调查视觉跨实施的模仿设置,其中代理商学习来自其他代理的视频(例如人类)的策略,示范相同的任务,但在其实施例中具有缺点差异 - 形状,动作,终效应器动态等。在这项工作中,我们证明可以从对这些差异强大的跨实施例证视频自动发现和学习基于视觉的奖励功能。具体而言,我们介绍了一种用于跨实施的跨实施的自我监督方法(XIRL),它利用时间周期 - 一致性约束来学习深度视觉嵌入,从而从多个专家代理的示范的脱机视频中捕获任务进度,每个都执行相同的任务不同的原因是实施例差异。在我们的工作之前,从自我监督嵌入产生奖励通常需要与参考轨迹对齐,这可能难以根据STARK实施例的差异来获取。我们凭经验显示,如果嵌入式了解任务进度,则只需在学习的嵌入空间中占据当前状态和目标状态之间的负距离是有用的,作为培训与加强学习的培训政策的奖励。我们发现我们的学习奖励功能不仅适用于在训练期间看到的实施例,而且还概括为完全新的实施例。此外,在将现实世界的人类示范转移到模拟机器人时,我们发现XIRL比当前最佳方法更具样本。 https://x-irl.github.io提供定性结果,代码和数据集
translated by 谷歌翻译
Learning policies that effectively utilize language instructions in complex, multi-task environments is an important problem in sequential decision-making. While it is possible to condition on the entire language instruction directly, such an approach could suffer from generalization issues. In our work, we propose \emph{Learning Interpretable Skill Abstractions (LISA)}, a hierarchical imitation learning framework that can learn diverse, interpretable primitive behaviors or skills from language-conditioned demonstrations to better generalize to unseen instructions. LISA uses vector quantization to learn discrete skill codes that are highly correlated with language instructions and the behavior of the learned policy. In navigation and robotic manipulation environments, LISA outperforms a strong non-hierarchical Decision Transformer baseline in the low data regime and is able to compose learned skills to solve tasks containing unseen long-range instructions. Our method demonstrates a more natural way to condition on language in sequential decision-making problems and achieve interpretable and controllable behavior with the learned skills.
translated by 谷歌翻译
我们介绍了语言信息的潜在行动(LILA),这是在人机协作的背景下学习自然语言界面的框架。 Lila落在共享自主范式下:除了提供离散语言输入之外,人类还有低维控制器$ - 例如,可以向左/向右和向右移动2自由度(DOF)操纵杆$ - $操作机器人。 LILA学习使用语言来调制本控制器,为用户提供语言信息的控制空间:给定“将谷物碗放在托盘上的指示”,LILA可以学习一个二维空间,其中一个维度控制距离的距离机器人的末端执行器到碗,另一个维度控制机器人的末端效应器相对于碗上的抓地点。我们使用现实世界的用户学习评估LILA,用户可以在操作7 DOF法兰卡·埃米卡熊猫手臂时提供语言指导,以完成一系列复杂的操作任务。我们表明LILA模型不仅可以比仿制学习和终端效应器控制基线更高效,而且表现不变,但它们也是质疑优选的用户。
translated by 谷歌翻译
For an autonomous agent to fulfill a wide range of user-specified goals at test time, it must be able to learn broadly applicable and general-purpose skill repertoires. Furthermore, to provide the requisite level of generality, these skills must handle raw sensory input such as images. In this paper, we propose an algorithm that acquires such general-purpose skills by combining unsupervised representation learning and reinforcement learning of goal-conditioned policies. Since the particular goals that might be required at test-time are not known in advance, the agent performs a self-supervised "practice" phase where it imagines goals and attempts to achieve them. We learn a visual representation with three distinct purposes: sampling goals for self-supervised practice, providing a structured transformation of raw sensory inputs, and computing a reward signal for goal reaching. We also propose a retroactive goal relabeling scheme to further improve the sample-efficiency of our method. Our off-policy algorithm is efficient enough to learn policies that operate on raw image observations and goals for a real-world robotic system, and substantially outperforms prior techniques. * Equal contribution. Order was determined by coin flip.
translated by 谷歌翻译
机器人操纵可以配制成诱导一系列空间位移:其中移动的空间可以包括物体,物体的一部分或末端执行器。在这项工作中,我们提出了一个简单的模型架构,它重新排列了深度功能,以从视觉输入推断出可视输入的空间位移 - 这可以参数化机器人操作。它没有对象的假设(例如规范姿势,模型或关键点),它利用空间对称性,并且比我们学习基于视觉的操纵任务的基准替代方案更高的样本效率,并且依赖于堆叠的金字塔用看不见的物体组装套件;从操纵可变形的绳索,以将堆积的小物体推动,具有闭环反馈。我们的方法可以表示复杂的多模态策略分布,并推广到多步顺序任务,以及6dof拾取器。 10个模拟任务的实验表明,它比各种端到端基线更快地学习并概括,包括使用地面真实对象姿势的政策。我们在现实世界中使用硬件验证我们的方法。实验视频和代码可在https://transporternets.github.io获得
translated by 谷歌翻译
如何从每个轨迹数据中提取尽可能多的学习信号是强化学习(RL)中的关键问题,其中样本效率低下对实际应用构成了严重挑战。最近的作品表明,使用表现力的政策函数近似器和对未来轨迹信息的调理 - 例如在决策变压器(DT)中重播或退回的未来状态 - 可以高效地学习多任务策略,在哪里有时在线RL被离线行为克隆完全替换,例如序列建模。我们展示所有这些方法都正在进行后视信息匹配(他) - 培训策略,可以输出与未来状态信息的一些统计数据匹配的轨迹的其余轨迹。我们呈现出用于解决任何问题的广义决策变压器(GDT),并显示特征功能的选择和抗因果聚合器的不同选择性不仅恢复DT为特殊情况,而且还导致新的分类DT(CDT)和BI - 用于匹配未来不同统计数据的DT(BDT)。为了评估CDT和BDT,我们将离线多任务状态边缘匹配(SMM)和仿制学习(IL)定义为两个普遍的他问题,提出了Wasserstein距离损失作为两者的度量,并对Mujoco连续控制进行了经验研究它们基准。 CDT简单地取代了DT中的反因果衬合的反因果求和,使得第一种有效的离线多任务SMM算法概括为看不见甚至合成的多模态状态特征分布。使用反因果第二变压器作为聚合器的BDT可以学习模拟未来的任何统计数据,并在离线多任务IL中占DT变体。我们的广义配方来自他和GDT大大扩大了强大的序列建模架构在现代RL中的作用。
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
在嘈杂的互联网规模数据集上进行了预测,已对具有广泛的文本,图像和其他模式能力的培训模型进行了大量研究。但是,对于许多顺序决策域,例如机器人技术,视频游戏和计算机使用,公开可用的数据不包含以相同方式训练行为先验所需的标签。我们通过半监督的模仿学习将互联网规模的预处理扩展到顺序的决策域,其中代理通过观看在线未标记的视频来学习行动。具体而言,我们表明,使用少量标记的数据,我们可以训练一个足够准确的反向动力学模型,可以标记一个巨大的未标记在线数据来源 - 在这里,在线播放Minecraft的在线视频 - 然后我们可以从中训练一般行为先验。尽管使用了本地人类界面(鼠标和键盘为20Hz),但我们表明,这种行为先验具有非平凡的零射击功能,并且可以通过模仿学习和加强学习,可以对其进行微调,以进行硬探索任务。不可能通过增强学习从头开始学习。对于许多任务,我们的模型都表现出人类水平的性能,我们是第一个报告可以制作钻石工具的计算机代理,这些工具可以花费超过20分钟(24,000个环境动作)的游戏玩法来实现。
translated by 谷歌翻译
有效的探索是深度强化学习的关键挑战。几种方法,例如行为先验,能够利用离线数据,以便在复杂任务上有效加速加强学习。但是,如果手动的任务与所证明的任务过度偏离,则此类方法的有效性是有限的。在我们的工作中,我们建议从离线数据中学习功能,这些功能由更加多样化的任务共享,例如动作与定向之间的相关性。因此,我们介绍了无国有先验,该先验直接在显示的轨迹中直接建模时间一致性,并且即使在对简单任务收集的数据进行培训时,也能够在复杂的任务中推动探索。此外,我们通过从政策和行动之前的概率混合物中动态采样动作,引入了一种新颖的集成方案,用于非政策强化学习中的动作研究。我们将我们的方法与强大的基线相提并论,并提供了经验证据,表明它可以在稀疏奖励环境下的长途持续控制任务中加速加强学习。
translated by 谷歌翻译
基于变压器神经网络体系结构的自然语言处理(NLP)的令人印象深刻的结果激发了研究人员探索视线离线增强学习(RL)作为通用序列建模问题。基于此范式的最新著作已获得最新的结果,其中一些主要确定性的离线Atari和D4RL基准。但是,由于这些方法将国家和行动共同模拟单一的测序问题,因此它们努力将政策和世界动态对回报的影响解散。因此,在对抗或随机环境中,这些方法导致过度乐观的行为,在自主驾驶(例如自主驾驶)中可能是危险的。在这项工作中,我们提出了一种通过明确解开政策和世界模型来解决这种乐观偏见的方法,该方法使我们在测试时可以搜索对环境中多个可能的未来的稳健性的策略。我们在模拟中的各种自动驾驶任务上展示了我们的方法的出色性能。
translated by 谷歌翻译
机器人技术中的一个长期目标是建立可以从使用其板载传感器获得的感知中执行各种日常任务的机器人,并且仅通过自然语言指定。尽管最近通过利用从像素的端到端学习来实现了在语言驱动的机器人技术中的实质性进步,但由于设置的基本差异,没有明确且妥善理解的过程来做出各种设计选择。在本文中,我们对从离线自由模仿数据集中学习语言条件政策的最关键挑战进行了广泛的研究。我们进一步确定了改善性能的架构和算法技术,例如机器人控制学习的层次分解,多模式变压器编码器,离散的潜在计划以及与视频和语言表示一致的自我监视的对比损失。通过将调查的结果与改进的模型组件相结合,我们能够提出一种新颖的方法,该方法在具有挑战性的语言条件长的长摩托器机器人操纵Calvin基准上大大优于最新技术。我们已经开源的实施方式,以促进未来的研究,以学习自然语言连续指定的许多复杂的操纵技能。 http://hulc.cs.uni-freiburg.de可用代码库和训练有素的模型
translated by 谷歌翻译