储层计算是一种使用高维动力系统或\ emph {Reservoir}的机器学习范式,以近似和预测时间序列数据。可以通过从电子电路中构造储层来增强储层计算机的规模,速度和功率使用,并且一些实验研究证明了这一方向的希望。但是,设计质量储层需要精确理解此类电路如何处理和存储信息。我们分析了包括线性元件(电阻器,电感器和电容器)和称为MEMRISTOR的非线性记忆元件的电子储层的可行性和最佳设计。我们提供了有关这些储层的可行性的分析结果,并通过检查它们可以近似的输入输出关系的类型来对其计算属性进行系统的表征。这使我们能够设计具有最佳属性的储层。通过引入储层的总线性和非线性计算能力的衡量标准,我们能够设计其总计算能力随系统尺寸广泛规模的电子电路。我们的电子储层可以以可能直接在硬件中实现的形式匹配或超过常规“ Echo State Network”储层的性能。
translated by 谷歌翻译
Koopman运算符是无限维的运算符,可全球线性化非线性动态系统,使其光谱信息可用于理解动态。然而,Koopman运算符可以具有连续的光谱和无限维度的子空间,使得它们的光谱信息提供相当大的挑战。本文介绍了具有严格融合的数据驱动算法,用于从轨迹数据计算Koopman运算符的频谱信息。我们引入了残余动态模式分解(ResDMD),它提供了第一种用于计算普通Koopman运算符的Spectra和PseudtoStra的第一种方案,无需光谱污染。使用解析器操作员和RESDMD,我们还计算与测量保存动态系统相关的光谱度量的平滑近似。我们证明了我们的算法的显式收敛定理,即使计算连续频谱和离散频谱的密度,也可以实现高阶收敛即使是混沌系统。我们展示了在帐篷地图,高斯迭代地图,非线性摆,双摆,洛伦茨系统和11美元延长洛伦兹系统的算法。最后,我们为具有高维状态空间的动态系统提供了我们的算法的核化变体。这使我们能够计算与具有20,046维状态空间的蛋白质分子的动态相关的光谱度量,并计算出湍流流过空气的误差界限的非线性Koopman模式,其具有雷诺数为$> 10 ^ 5 $。一个295,122维的状态空间。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
经常性神经网络(RNNS)是强大的动态模型,广泛用于机器学习(ML)和神经科学。之前的理论作品集中在具有添加剂相互作用的RNN上。然而,门控 - 即乘法 - 相互作用在真神经元中普遍存在,并且也是ML中最佳性能RNN的中心特征。在这里,我们表明Gating提供灵活地控制集体动态的两个突出特征:i)时间尺寸和ii)维度。栅极控制时间尺度导致新颖的稳定状态,网络用作灵活积分器。与以前的方法不同,Gating允许这种重要功能而没有参数微调或特殊对称。门还提供一种灵活的上下文相关机制来重置存储器跟踪,从而补充存储器功能。调制维度的栅极可以诱导新颖的不连续的混沌转变,其中输入将稳定的系统推向强的混沌活动,与通常稳定的输入效果相比。在这种转变之上,与添加剂RNN不同,关键点(拓扑复杂性)的增殖与混沌动力学的外观解耦(动态复杂性)。丰富的动态总结在相图中,从而为ML从业者提供了一个原理参数初始化选择的地图。
translated by 谷歌翻译
Despite the widespread practical success of deep learning methods, our theoretical understanding of the dynamics of learning in deep neural networks remains quite sparse. We attempt to bridge the gap between the theory and practice of deep learning by systematically analyzing learning dynamics for the restricted case of deep linear neural networks. Despite the linearity of their input-output map, such networks have nonlinear gradient descent dynamics on weights that change with the addition of each new hidden layer. We
translated by 谷歌翻译
我们建议采用统计回归作为投影操作员,以使数据驱动以数据为基础的Mori-Zwanzig形式主义中的运营商学习。我们提出了一种原则性方法,用于为任何回归模型提取Markov和内存操作员。我们表明,线性回归的选择导致了基于Mori的投影操作员最近提出的数据驱动的学习算法,这是一种高阶近似Koopman学习方法。我们表明,更具表现力的非线性回归模型自然填补了高度理想化和计算有效的MORI投影操作符和最佳迄今为止计算上最佳的Zwanzig投影仪之间的差距。我们进行了数值实验,并提取了一系列基于回归的投影的运算符,包括线性,多项式,样条和基于神经网络的回归,随着回归模型的复杂性的增加而显示出渐进的改进。我们的命题提供了一个通用框架来提取内存依赖性校正,并且可以轻松地应用于文献中固定动力学系统的一系列数据驱动的学习方法。
translated by 谷歌翻译
我们开发一种方法来构造来自表示基本上非线性(或不可连锁的)动态系统的数据集构成低维预测模型,其中具有由有限许多频率的外部强制进行外部矫正的双曲线线性部分。我们的数据驱动,稀疏,非线性模型获得为低维,吸引动力系统的光谱子纤维(SSM)的降低的动态的延长正常形式。我们说明了数据驱动的SSM降低了高维数值数据集的功率和涉及梁振荡,涡旋脱落和水箱中的晃动的实验测量。我们发现,在未加工的数据上培训的SSM减少也在额外的外部强制下准确预测非线性响应。
translated by 谷歌翻译
提出了用于基于合奏的估计和模拟高维动力系统(例如海洋或大气流)的方法学框架。为此,动态系统嵌入了一个由动力学驱动的内核功能的繁殖核Hilbert空间的家族中。这个家庭因其吸引人的财产而被昵称为仙境。在梦游仙境中,Koopman和Perron-Frobenius操作员是统一且均匀的。该属性保证它们可以在一系列可对角线的无限发电机中表达。访问Lyapunov指数和切线线性动力学的精确集合表达式也可以直接可用。仙境使我们能够根据轨迹样本的恒定时间线性组合来设计出惊人的简单集合数据同化方法。通过几个基本定理的完全合理的叠加原则,使这种令人尴尬的简单策略成为可能。
translated by 谷歌翻译
量化和验证准备量子状态的控制水平是构建量子器件中的中心挑战。量子状态的特点是实验测量,使用称为断层扫描的程序,这需要大量资源。此外,尚未制定与颞下处理的量子装置的断层扫描,其尚未制定与标准断层扫描的逐时处理。我们使用经常性机器学习框架开发了一种实用和近似的断层扫描方法,用于这种有趣情况。该方法基于具有量子态流称为量子储存器的系统之间的重复量子相互作用。来自储存器的测量数据连接到线性读数,以训练施加到输入流的量子通道之间的反复关系。我们展示了Quantum学习任务的算法,然后是Quantum短期内存容量的提议,以评估近术语量子器件的时间处理能力。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
Experimental sciences have come to depend heavily on our ability to organize, interpret and analyze high-dimensional datasets produced from observations of a large number of variables governed by natural processes. Natural laws, conservation principles, and dynamical structure introduce intricate inter-dependencies among these observed variables, which in turn yield geometric structure, with fewer degrees of freedom, on the dataset. We show how fine-scale features of this structure in data can be extracted from \emph{discrete} approximations to quantum mechanical processes given by data-driven graph Laplacians and localized wavepackets. This data-driven quantization procedure leads to a novel, yet natural uncertainty principle for data analysis induced by limited data. We illustrate the new approach with algorithms and several applications to real-world data, including the learning of patterns and anomalies in social distancing and mobility behavior during the COVID-19 pandemic.
translated by 谷歌翻译
Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets.This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed-either explicitly or implicitly-to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis.The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast with O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multi-processor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
translated by 谷歌翻译
我们合并计算力学的因果状态(预测等同历史)的定义与再现 - 内核希尔伯特空间(RKHS)表示推断。结果是一种广泛适用的方法,可直接从系统行为的观察中迁移因果结构,无论它们是否超过离散或连续事件或时间。结构表示 - 有限或无限状态内核$ \ epsilon $ -Machine - 由减压变换提取,其提供了有效的因果状态及其拓扑。以这种方式,系统动态由用于在因果状态上的随机(普通或部分)微分方程表示。我们介绍了一种算法来估计相关的演化运营商。平行于Fokker-Plank方程,它有效地发展了因果状态分布,并通过RKHS功能映射在原始数据空间中进行预测。我们展示了这些技术,以及他们的预测能力,在离散时间的离散时间离散 - 有限的无限值Markov订单流程,其中有限状态隐藏马尔可夫模型与(i)有限或(ii)不可数 - 无限因果态和(iii)连续时间,由热驱动的混沌流产生的连续值处理。该方法在存在不同的外部和测量噪声水平和非常高的维数据存在下鲁棒地估计因果结构。
translated by 谷歌翻译
我们提出了一种从数据模拟动态系统的数值方法。我们使用最近引入的方法可扩展的概率近似(SPA)从欧几里德空间到凸多台的项目点,并表示在新的低维坐标中的系统的预计状态,表示其在多晶硅中的位置。然后,我们介绍特定的非线性变换,以构建多特渗透中动力学的模型,并转换回原始状态空间。为了克服投影到低维层的潜在信息损失,我们在局部延迟嵌入定理的意义上使用记忆。通过施工,我们的方法产生稳定的模型。我们说明了在各种示例上具有多个连接组件的甚至复制混沌动力学和吸引子的方法的能力。
translated by 谷歌翻译
基于量子的通信中的当前技术将量子数据的新集成与经典数据进行混合处理。但是,这些技术的框架仅限于单个经典或量子任务,这限制了它们在近期应用中的灵活性。我们建议在需要经典和量子输入的计算任务中利用量子储存器处理器来利用量子动力学。该模拟处理器包括一个量子点网络,其中量子数据被入射到网络中,并且经典数据通过一个连贯的字段刺激了网络进行编码。我们执行量子断层扫描和经典通道非线性均衡的多任务应用。有趣的是,可以通过对经典数据的反馈控制以闭环方式进行断层扫描。因此,如果经典输入来自动力学系统,则将该系统嵌入封闭环中,即使访问对外部经典输入的访问被中断也可以处理混合处理。最后,我们证明准备量子去极化通道是一种用于量子数据处理的新型量子机学习技术。
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
在许多科学学科中,我们有兴趣推断一组观察到的时间序列的非线性动力学系统,这是面对混乱的行为和噪音,这是一项艰巨的任务。以前的深度学习方法实现了这一目标,通常缺乏解释性和障碍。尤其是,即使基本动力学生存在较低维的多种多样的情况下,忠实嵌入通常需要的高维潜在空间也会阻碍理论分析。在树突计算的新兴原则的推动下,我们通过线性样条基础扩展增强了动态解释和数学可牵引的分段线性(PL)复发性神经网络(RNN)。我们表明,这种方法保留了简单PLRNN的所有理论上吸引人的特性,但在相对较低的尺寸中提高了其近似任意非线性动态系统的能力。我们采用两个框架来训练该系统,一个将反向传播的时间(BPTT)与教师强迫结合在一起,另一个将基于快速可扩展的变异推理的基础。我们表明,树枝状扩展的PLRNN可以在各种动力学系统基准上获得更少的参数和尺寸,并与其他方法进行比较,同时保留了可拖动和可解释的结构。
translated by 谷歌翻译
线性时间不变的状态空间模型(SSM)是工程和统计数据的经典模型,最近通过结构化状态空间序列模型(S4)证明,在机器学习中非常有前途。 S4的核心成分涉及将SSM状态矩阵初始化为称为HIPPO矩阵的特定矩阵,这对于S4处理长序列的能力在经验上很重要。但是,S4使用的特定矩阵实际上是在特定时间变化的动态系统中得出的,并且将此矩阵用作时间不变的SSM没有已知的数学解释。因此,S4模拟远程依赖性的理论机制实际上仍无法解释。我们得出了河马框架的更一般和直观的公式,该框架将S4作为对指数型的Legendre多项式的分解提供了简单的数学解释,解释了其捕获长依赖性的能力。我们的概括引入了理论上丰富的SSM类,还使我们能够为其他碱基(例如傅立叶基础)得出更直观的S4变体,并解释了训练S4的其他方面,例如如何初始化重要的时间表参数。这些见解将S4的性能提高到远程竞技场基准的86%,在最困难的Path-X任务中,S4的性能为96%。
translated by 谷歌翻译
基于签名的技术使数学洞察力洞悉不断发展的数据的复杂流之间的相互作用。这些见解可以自然地转化为理解流数据的数值方法,也许是由于它们的数学精度,已被证明在数据不规则而不是固定的情况下分析流的数据以及数据和数据的尺寸很有用样本量均为中等。了解流的多模式数据是指数的:$ d $ d $的字母中的$ n $字母中的一个单词可以是$ d^n $消息之一。签名消除了通过采样不规则性引起的指数级噪声,但仍然存在指数量的信息。这项调查旨在留在可以直接管理指数缩放的域中。在许多问题中,可伸缩性问题是一个重要的挑战,但需要另一篇调查文章和进一步的想法。这项调查描述了一系列环境集足够小以消除大规模机器学习的可能性,并且可以有效地使用一小部分免费上下文和原则性功能。工具的数学性质可以使他们对非数学家的使用恐吓。本文中介绍的示例旨在弥合此通信差距,并提供从机器学习环境中绘制的可进行的工作示例。笔记本可以在线提供这些示例中的一些。这项调查是基于伊利亚·雪佛兰(Ilya Chevryev)和安德烈·科米利津(Andrey Kormilitzin)的早期论文,它们在这种机械开发的较早时刻大致相似。本文说明了签名提供的理论见解是如何在对应用程序数据的分析中简单地实现的,这种方式在很大程度上对数据类型不可知。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译