当测试数据与培训数据不同时,机器学习模型很容易失败,这种情况通常在称为分销转移的真实应用程序中遇到。尽管仍然有效,但培训时间知识的效率就降低了,需要进行测试时间适应以保持高性能。以下方法假设批处理层并使用其统计数据进行适应,我们提出了使用主成分分析(TTAWPCA)的测试时间适应,该测试时间假定拟合的PCA并在测试时间适应基于光谱过滤器,基于奇异的滤波器。 PCA可用于腐败的鲁棒性。 TTAWPCA结合了三个组件:使用主成分分析(PCA)分解给定层的输出,并通过其单数值的惩罚过滤,并用PCA逆变换重建。与当前方法相比,这种通用增强功能增加的参数少。在CIFAR-10-C和CIFAR-100-C上进行的实验证明了使用2000参数的唯一滤波器的有效性和限制。
translated by 谷歌翻译
在测试时间适应(TTA)中,给定在某些源数据上培训的模型,目标是使其适应从不同分布的测试实例更好地预测。至关重要的是,TTA假设从目标分布到Finetune源模型,无法访问源数据或甚至从目标分布到任何其他标记/未标记的样本。在这项工作中,我们考虑TTA在更务实的设置中,我们称为SITA(单图像测试时间适应)。这里,在制作每个预测时,该模型只能访问给定的\ emph {单}测试实例,而不是实例的\ emph {批次}。通常在文献中被考虑。这是由逼真的情况激励,其中在按需时尚中需要推断,可能不会被延迟到“批量 - iFY”传入请求或者在没有范围的边缘设备(如移动电话中)发生推断批处理。 SITA的整个适应过程应在推理时间发生时非常快。为了解决这个问题,我们提出了一种新颖的AUGBN,用于仅需要转发传播的SITA设置。该方法可以为分类和分段任务的单个测试实例调整任何特征训练模型。 AUGBN估计仅使用具有标签保存的转换的一个前进通过的给定测试图像的看不见的测试分布的正常化统计。由于AUGBN不涉及任何反向传播,与其他最近的方法相比,它显着更快。据我们所知,这是仅使用单个测试图像解决此硬调整问题的第一个工作。尽管非常简单,但我们的框架能够在我们广泛的实验和消融研究中对目标实例上应用源模型来实现显着的性能增益。
translated by 谷歌翻译
分批归一化(BN)是一种无处不在的技术,用于训练深层神经网络,可加速其收敛以达到更高的准确性。但是,我们证明了BN具有根本的缺点:它激励该模型依赖于训练(内域)数据高度特定的低变义特征,从而损害了室外示例的概括性能。在这项工作中,我们首先表明在各种架构上删除BN层会导致较低的域外和腐败错误,而造成较高的内域错误,因此我们首先研究了这种现象。然后,我们提出了反平衡老师(CT),该方法利用与老师的老师一起利用同一模型的冷冻副本,通过通过一致性损失功能实质上调整其权重来实现学生网络对强大表示的学习。该正则化信号有助于CT在不可预见的数据变化中表现良好,即使没有从目标域中的信息如先前的工作中。从理论上讲,我们在过度参数化的线性回归设置中显示了为什么归一化导致模型对这种内域特征的依赖,并通过验证CT的功效来证明CT的功效,从而在稳健性基准(例如CIFAR-10-C,CIFAR-10-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100)上表现出了疗效。和VLCS。
translated by 谷歌翻译
本文提出了一种新颖的测试时间适应策略,该策略仅使用来自目标域的未标记的在线数据来调整在源域上预先训练的模型,以减轻由于源和目标域之间的分布变化而导致的性能降低。使用未标记的在线数据调整整个模型参数可能是有害的,这是由于无监督目标的错误信号。为了减轻此问题,我们提出了一个偏僻的权重正则化,该调整重量正规化鼓励在很大程度上更新模型参数对分布移位敏感的参数,同时在测试时间适应期间稍微更新那些对变化的不敏感的参数。这种正则化使该模型能够通过利用高学习率的好处来快速适应目标域而无需性能降低。此外,我们提出了一个基于最近的源原型来对齐源和目标特征的辅助任务,这有​​助于减少分布转移并导致进一步的性能提高。我们表明,我们的方法在各种标准基准方面展示了最先进的性能,甚至超过其监督的对手。
translated by 谷歌翻译
In this paper, we propose Test-Time Training, a general approach for improving the performance of predictive models when training and test data come from different distributions. We turn a single unlabeled test sample into a self-supervised learning problem, on which we update the model parameters before making a prediction. This also extends naturally to data in an online stream. Our simple approach leads to improvements on diverse image classification benchmarks aimed at evaluating robustness to distribution shifts.
translated by 谷歌翻译
Although action recognition systems can achieve top performance when evaluated on in-distribution test points, they are vulnerable to unanticipated distribution shifts in test data. However, test-time adaptation of video action recognition models against common distribution shifts has so far not been demonstrated. We propose to address this problem with an approach tailored to spatio-temporal models that is capable of adaptation on a single video sample at a step. It consists in a feature distribution alignment technique that aligns online estimates of test set statistics towards the training statistics. We further enforce prediction consistency over temporally augmented views of the same test video sample. Evaluations on three benchmark action recognition datasets show that our proposed technique is architecture-agnostic and able to significantly boost the performance on both, the state of the art convolutional architecture TANet and the Video Swin Transformer. Our proposed method demonstrates a substantial performance gain over existing test-time adaptation approaches in both evaluations of a single distribution shift and the challenging case of random distribution shifts. Code will be available at \url{https://github.com/wlin-at/ViTTA}.
translated by 谷歌翻译
部署的ML模型的基本要求是从与培训不同的测试分布中汲取的数据概括。解决此问题的一个流行解决方案是,仅使用未标记的数据将预训练的模型调整为新的域。在本文中,我们关注该问题的挑战性变体,其中访问原始源数据受到限制。虽然完全测试时间适应(FTTA)和无监督的域适应性(UDA)密切相关,但由于大多数UDA方法需要访问源数据,因此UDA的进展不容易适用于TTA。因此,我们提出了一种新方法,即Cattan,它通过放松了通过新颖的深层子空间对准策略来放松访问整个源数据的需求,从而弥合了UDA和FTTA。通过为源数据存储的子空间基础设置的最小开销,Cattan在适应过程中可以在源数据和目标数据之间进行无监督的对齐。通过对多个2D和3D Vision基准测试(Imagenet-C,Office-31,OfficeHome,Domainnet,PointDa-10)和模型体系结构进行广泛的实验评估,我们在FTTA性能方面表现出显着提高。此外,即使使用固有健壮的模型,预训练的VIT表示以及目标域中的样本可用性低,我们也会对对齐目标的实用性做出许多关键发现。
translated by 谷歌翻译
域适应对于将学习模型调整到新方案,例如域移位或更改数据分布,这是至关重要的。目前的方法通常需要来自移位域的大量标记或未标记的数据。这可以是在需要连续动态适应或遭受数据稀缺的领域的障碍,例如,自动驾驶在挑战天气条件下。为了解决持续适应分配班的问题,我们提出了动态无监督的适应(DUA)。我们通过持续调整批量归一化层的统计来修改模型的特征表示。我们表明,通过从移位域中仅访问一小部分未标记的数据并按顺序调整,可以实现强大的性能增益。甚至从目标领域的未标记数据的少于1%,Dua已经实现了强大的基线的竞争结果。此外,与先前的方法相比,计算开销最小。我们的方法很简单,但有效,可以应用于任何使用批量归一化作为其组件之一的架构。我们通过在各种域适应数据集和任务中评估DUA的效用,包括对象识别,数字识别和对象检测。
translated by 谷歌翻译
Vision Transformer(VIT)在图像处理中变得越来越流行。具体而言,我们研究了测试时间适应(TTA)对VIT的有效性,VIT是一种已经出现的技术,可以自行纠正其在测试时间期间的预测。首先,我们在VIT-B16和VIT-L16上基准了各种测试时间适应方法。结果表明,使用适当的损耗函数时,TTA对VIT有效,并且先前的投入(明智地选择调制参数)是不需要的。基于观察结果,我们提出了一种称为类条件特征对齐(CFA)的新的测试时间适应方法,该方法将类别条件分布的差异和在线源中隐藏表示的整个分布差异最小化,在线中的整个分布差异方式。图像分类任务(CIFAR-10-C,CIFAR-100-C和Imagenet-C)和域适应性(Digits DataSet和Imagenet-Sketch)的实验表明,CFA稳定地超过了各种数据集中的现有基础。我们还通过在RESNET,MLP混合和几种VIT变体(Vit-augreg,Deit和Beit)上实验来验证CFA是模型不可知论。使用BEIT主链,CFA在Imagenet-C上达到了19.8%的TOP-1错误率,表现优于现有的测试时间适应基线44.0%。这是不需要改变训练阶段的TTA方法中的最新结果。
translated by 谷歌翻译
测试时间适应(TTA)是指适应神经网络以进行分配变化,仅在测试时间内从新域中访问未标记的测试样本。先前的TTA方法优化了无监督的目标,例如帐篷中的模型预测的熵[Wang等,2021],但目前尚不清楚到底是什么使TTA损失良好。在本文中,我们首先提出一个令人惊讶的现象:如果我们尝试在广泛的功能上衡量最佳的TTA损失,那么我们恢复了与(温度缩放版本的)非常相似的函数帐篷采用的软磁性 - 凝集。但是,只有在我们正在适应的分类器通过跨凝结训练的情况下,这才能保持;如果通过平方损失训练,则会出现不同的最佳TTA损失。为了解释这一现象,我们通过训练损失的凸结合物分析了TTA。我们表明,在自然条件下,这种(无监督的)共轭功能可以看作是对原始监督损失的局部近似值,实际上,它恢复了元学习发现的最佳损失。这导致了一种通用食谱,可用于为通用类的任何给定监督培训损失功能找到良好的TTA损失。从经验上讲,我们的方法始终在广泛的基准测试中统治其他基线。当应用于新型损失功能的分类器时,我们的方法尤其令人感兴趣,例如,最近所传播的polyloss与基于熵的损失有很大的不同。此外,我们表明我们的方法也可以用非常特定的软标签解释为一种自我训练,我们将其称为共轭伪标记。总体而言,我们的方法为更好地理解和改善测试时间适应提供了广泛的框架。代码可在https://github.com/locuslab/tta_conjugate上找到。
translated by 谷歌翻译
We demonstrate that self-learning techniques like entropy minimization and pseudo-labeling are simple and effective at improving performance of a deployed computer vision model under systematic domain shifts. We conduct a wide range of large-scale experiments and show consistent improvements irrespective of the model architecture, the pre-training technique or the type of distribution shift. At the same time, self-learning is simple to use in practice because it does not require knowledge or access to the original training data or scheme, is robust to hyperparameter choices, is straight-forward to implement and requires only a few adaptation epochs. This makes self-learning techniques highly attractive for any practitioner who applies machine learning algorithms in the real world. We present state-of-the-art adaptation results on CIFAR10-C (8.5% error), ImageNet-C (22.0% mCE), ImageNet-R (17.4% error) and ImageNet-A (14.8% error), theoretically study the dynamics of self-supervised adaptation methods and propose a new classification dataset (ImageNet-D) which is challenging even with adaptation.
translated by 谷歌翻译
大多数机器学习算法的基本假设是培训和测试数据是从相同的底层分布中汲取的。然而,在几乎所有实际应用中违反了这种假设:由于不断变化的时间相关,非典型最终用户或其他因素,机器学习系统经常测试。在这项工作中,我们考虑域泛化的问题设置,其中训练数据被构造成域,并且可能有多个测试时间偏移,对应于新域或域分布。大多数事先方法旨在学习在所有域上执行良好的单一强大模型或不变的功能空间。相比之下,我们的目标是使用未标记的测试点学习适应域转移到域移的模型。我们的主要贡献是介绍自适应风险最小化(ARM)的框架,其中模型被直接优化,以便通过学习来转移以适应培训域来改编。与稳健性,不变性和适应性的先前方法相比,ARM方法提供了在表现域移位的多个图像分类问题上的性能增益为1-4%的测试精度。
translated by 谷歌翻译
尽管对图像分类任务的表现令人印象深刻,但深网络仍然难以概括其数据的许多常见损坏。为解决此漏洞,事先作品主要专注于提高其培训管道的复杂性,以多样性的名义结合多种方法。然而,在这项工作中,我们逐步回来并遵循原则的方法来实现共同腐败的稳健性。我们提出了一个普遍的数据增强方案,包括最大熵图像变换的简单系列。我们展示了Prime优于现有技术的腐败鲁棒性,而其简单和即插即用性质使其能够与其他方法结合以进一步提升其稳健性。此外,我们分析了对综合腐败图像混合策略的重要性,并揭示了在共同腐败背景下产生的鲁棒性准确性权衡的重要性。最后,我们表明我们的方法的计算效率允许它在线和离线数据增强方案轻松使用。
translated by 谷歌翻译
Test-time adaptation is the problem of adapting a source pre-trained model using test inputs from a target domain without access to source domain data. Most of the existing approaches address the setting in which the target domain is stationary. Moreover, these approaches are prone to making erroneous predictions with unreliable uncertainty estimates when distribution shifts occur. Hence, test-time adaptation in the face of non-stationary target domain shift becomes a problem of significant interest. To address these issues, we propose a principled approach, PETAL (Probabilistic lifElong Test-time Adaptation with seLf-training prior), which looks into this problem from a probabilistic perspective using a partly data-dependent prior. A student-teacher framework, where the teacher model is an exponential moving average of the student model naturally emerges from this probabilistic perspective. In addition, the knowledge from the posterior distribution obtained for the source task acts as a regularizer. To handle catastrophic forgetting in the long term, we also propose a data-driven model parameter resetting mechanism based on the Fisher information matrix (FIM). Moreover, improvements in experimental results suggest that FIM based data-driven parameter restoration contributes to reducing the error accumulation and maintaining the knowledge of recent domain by restoring only the irrelevant parameters. In terms of predictive error rate as well as uncertainty based metrics such as Brier score and negative log-likelihood, our method achieves better results than the current state-of-the-art for online lifelong test time adaptation across various benchmarks, such as CIFAR-10C, CIFAR-100C, ImageNetC, and ImageNet3DCC datasets.
translated by 谷歌翻译
测试时间适应利用测试输入,以提高对源数据进行训练的模型的准确性,这些模型在转移的目标数据上进行了测试。现有方法通过(重新)对每个目标域进行培训来更新源模型。虽然有效,但重新训练对数据的数量和顺序和优化的超参数敏感。相反,我们通过使用生成扩散模型将所有测试输入投影到源域来更新目标数据。我们的扩散驱动的适应方法DDA共享其在所有领域的分类和生成模型。两种模型均在源域上训练,然后在测试过程中固定。我们通过图像指导和自我缩放来自动决定适应多少。 DDA的输入适应比在Imagenet-C基准上的各种损坏,体系结构和数据制度中的先前模型适应方法更强大。借助其输入更新,DDA成功了,在小批次中的数据中,模型适应性降低了,以较少的数据降低,以非统一顺序或具有多个损坏的混合数据降低。
translated by 谷歌翻译
测试时间的域变化在实践中是不可避免的。测试时间适应性通过在部署过程中调整模型来解决此问题。从理论上讲,最近的工作表明,自我训练可能是逐渐域移动的强大方法。在这项工作中,我们显示了渐进域适应与测试时间适应之间的自然联系。我们发布了一个名为Carlatta的新合成数据集,该数据集允许在测试时间期间探索渐进的域移动,并评估无监督域适应和测试时间适应的几种方法。我们提出了一种基于自我训练和样式转移的新方法GTTA。GTTA明确利用渐进域移动并在该区域设置新标准。我们进一步证明了我们的方法对连续和逐渐的CIFAR10C,CIFAR100C和Imagenet-C基准的有效性。
translated by 谷歌翻译
经过认证的稳健性保证衡量模型对测试时间攻击的稳健性,并且可以评估模型对现实世界中部署的准备情况。在这项工作中,我们批判性地研究了对基于随机平滑的认证方法的对抗鲁棒性如何在遇到配送外(OOD)数据的最先进的鲁棒模型时改变。我们的分析显示了这些模型的先前未知的漏洞,以低频OOD数据,例如与天气相关的损坏,使这些模型不适合在野外部署。为了缓解这个问题,我们提出了一种新的数据增强方案,Fourimix,产生增强以改善训练数据的光谱覆盖范围。此外,我们提出了一种新规范器,鼓励增强数据的噪声扰动的一致预测,以提高平滑模型的质量。我们发现Fouriermix增强有助于消除可认真强大的模型的频谱偏差,使其能够在一系列ood基准上实现明显更好的稳健性保证。我们的评估还在突出模型的光谱偏差时揭示了当前的OOD基准。为此,我们提出了一个全面的基准套件,其中包含来自光谱域中不同区域的损坏。对拟议套件上流行的增强方法培训的模型的评估突出了它们的光谱偏差,并建立了富硫克斯训练型模型在实现整个频谱上变化下的更好认证的鲁棒性担保的优势。
translated by 谷歌翻译
Models should be able to adapt to unseen data during test-time to avoid performance drops caused by inevitable distribution shifts in real-world deployment scenarios. In this work, we tackle the practical yet challenging test-time adaptation (TTA) problem, where a model adapts to the target domain without accessing the source data. We propose a simple recipe called \textit{Data-efficient Prompt Tuning} (DePT) with two key ingredients. First, DePT plugs visual prompts into the vision Transformer and only tunes these source-initialized prompts during adaptation. We find such parameter-efficient finetuning can efficiently adapt the model representation to the target domain without overfitting to the noise in the learning objective. Second, DePT bootstraps the source representation to the target domain by memory bank-based online pseudo-labeling. A hierarchical self-supervised regularization specially designed for prompts is jointly optimized to alleviate error accumulation during self-training. With much fewer tunable parameters, DePT demonstrates not only state-of-the-art performance on major adaptation benchmarks VisDA-C, ImageNet-C, and DomainNet-126, but also superior data efficiency, i.e., adaptation with only 1\% or 10\% data without much performance degradation compared to 100\% data. In addition, DePT is also versatile to be extended to online or multi-source TTA settings.
translated by 谷歌翻译
我们关注模型概括中最坏的情况,因为一个模型旨在在许多看不见的域上表现良好,而只有一个单个域可供训练。我们提出基于元学习的对抗领域的增强,以解决此范围泛化问题。关键思想是利用对抗性训练来创建“虚构的”但“具有挑战性”的人群,模型可以从中学会通过理论保证进行概括。为了促进快速和理想的域增强,我们将模型训练施加在元学习方案中,并使用Wasserstein自动编码器放宽广泛使用的最坏情况的约束。我们通过整合有效域概括的不确定性定量来进一步改善我们的方法。在多个基准数据集上进行的广泛实验表明其在解决单个领域概括方面的出色性能。
translated by 谷歌翻译
对于神经网络的近似贝叶斯推断被认为是标准培训的强大替代品,通常在分发数据上提供良好的性能。然而,贝叶斯神经网络(BNNS)具有高保真近似推断的全批汉密尔顿蒙特卡罗在协变速下实现了较差的普遍,甚至表现不佳的经典估算。我们解释了这种令人惊讶的结果,展示了贝叶斯模型平均值实际上如何存在于协变量的情况下,特别是在输入特征中的线性依赖性导致缺乏后退的情况下。我们还展示了为什么相同的问题不会影响许多近似推理程序,或古典最大A-Bouthiori(地图)培训。最后,我们提出了改善BNN的鲁棒性的新型前锋,对许多协变量转变来源。
translated by 谷歌翻译