尽管对图像分类任务的表现令人印象深刻,但深网络仍然难以概括其数据的许多常见损坏。为解决此漏洞,事先作品主要专注于提高其培训管道的复杂性,以多样性的名义结合多种方法。然而,在这项工作中,我们逐步回来并遵循原则的方法来实现共同腐败的稳健性。我们提出了一个普遍的数据增强方案,包括最大熵图像变换的简单系列。我们展示了Prime优于现有技术的腐败鲁棒性,而其简单和即插即用性质使其能够与其他方法结合以进一步提升其稳健性。此外,我们分析了对综合腐败图像混合策略的重要性,并揭示了在共同腐败背景下产生的鲁棒性准确性权衡的重要性。最后,我们表明我们的方法的计算效率允许它在线和离线数据增强方案轻松使用。
translated by 谷歌翻译
经过认证的稳健性保证衡量模型对测试时间攻击的稳健性,并且可以评估模型对现实世界中部署的准备情况。在这项工作中,我们批判性地研究了对基于随机平滑的认证方法的对抗鲁棒性如何在遇到配送外(OOD)数据的最先进的鲁棒模型时改变。我们的分析显示了这些模型的先前未知的漏洞,以低频OOD数据,例如与天气相关的损坏,使这些模型不适合在野外部署。为了缓解这个问题,我们提出了一种新的数据增强方案,Fourimix,产生增强以改善训练数据的光谱覆盖范围。此外,我们提出了一种新规范器,鼓励增强数据的噪声扰动的一致预测,以提高平滑模型的质量。我们发现Fouriermix增强有助于消除可认真强大的模型的频谱偏差,使其能够在一系列ood基准上实现明显更好的稳健性保证。我们的评估还在突出模型的光谱偏差时揭示了当前的OOD基准。为此,我们提出了一个全面的基准套件,其中包含来自光谱域中不同区域的损坏。对拟议套件上流行的增强方法培训的模型的评估突出了它们的光谱偏差,并建立了富硫克斯训练型模型在实现整个频谱上变化下的更好认证的鲁棒性担保的优势。
translated by 谷歌翻译
不变性于广泛的图像损坏,例如翘曲,噪声或颜色移位,是在计算机视觉中建立强大模型的一个重要方面。最近,已经提出了几种新的数据增强,从而显着提高了Imagenet-C的性能,这是这种腐败的基准。但是,对数据增强和测试时间损坏之间的关系仍然缺乏基本的理解。为此,我们开发了图像变换的一个特征空间,然后在增强和损坏之间使用该空间中的新措施,称为最小示例距离,以演示相似性和性能之间的强相关性。然后,当测试时间损坏被对来自Imagenet-C中的测试时间损坏被采样时,我们调查最近的数据增强并观察腐败鲁棒性的重大退化。我们的结果表明,通过对感知同类增强的培训来提高测试错误,数据增强可能不会超出现有的基准。我们希望我们的结果和工具将允许更强大的进展,以提高对图像损坏的稳健性。我们在https://github.com/facebookresearch/augmentation - 窗子提供代码。
translated by 谷歌翻译
对共同腐败的稳健性的文献表明对逆势培训是否可以提高这种环境的性能,没有达成共识。 First, we show that, when used with an appropriately selected perturbation radius, $\ell_p$ adversarial training can serve as a strong baseline against common corruptions improving both accuracy and calibration.然后,我们解释了为什么对抗性训练比具有简单高斯噪声的数据增强更好地表现,这被观察到是对共同腐败的有意义的基线。与此相关,我们确定了高斯增强过度适用于用于培训的特定标准偏差的$ \ sigma $ -oviting现象,这对培训具有显着不利影响的普通腐败精度。我们讨论如何缓解这一问题,然后如何通过学习的感知图像贴片相似度引入对抗性训练的有效放松来进一步增强$ \ ell_p $普发的培训。通过对CiFar-10和Imagenet-100的实验,我们表明我们的方法不仅改善了$ \ ell_p $普发的培训基线,而且还有累积的收益与Augmix,Deepaulment,Ant和Sin等数据增强方法,导致普通腐败的最先进的表现。我们的实验代码在HTTPS://github.com/tml-epfl/adv-training - 窗子上公开使用。
translated by 谷歌翻译
Modern deep neural networks can achieve high accuracy when the training distribution and test distribution are identically distributed, but this assumption is frequently violated in practice. When the train and test distributions are mismatched, accuracy can plummet. Currently there are few techniques that improve robustness to unforeseen data shifts encountered during deployment. In this work, we propose a technique to improve the robustness and uncertainty estimates of image classifiers. We propose AUGMIX, a data processing technique that is simple to implement, adds limited computational overhead, and helps models withstand unforeseen corruptions. AUGMIX significantly improves robustness and uncertainty measures on challenging image classification benchmarks, closing the gap between previous methods and the best possible performance in some cases by more than half.
translated by 谷歌翻译
现代神经网络Excel在图像分类中,但它们仍然容易受到常见图像损坏,如模糊,斑点噪音或雾。最近的方法关注这个问题,例如Augmix和Deepaulment,引入了在预期运行的防御,以期望图像损坏分布。相比之下,$ \ ell_p $ -norm界限扰动的文献侧重于针对最坏情况损坏的防御。在这项工作中,我们通过提出防范内人来调和两种方法,这是一种优化图像到图像模型的参数来产生对外损坏的增强图像的技术。我们理论上激发了我们的方法,并为其理想化版本的一致性以及大纲领提供了足够的条件。我们的分类机器在预期对CiFar-10-C进行的常见图像腐败基准上提高了最先进的,并改善了CIFAR-10和ImageNet上的$ \ ell_p $ -norm有界扰动的最坏情况性能。
translated by 谷歌翻译
数据增强是一种提高深神经网络(DNN)的鲁棒性的简单而有效的方法。多样性和硬度是数据增强的两个互补维度,以实现稳健性。例如,Augmix探讨了各种增强套的随机组成,以增强更广泛的覆盖,而对抗性培训产生过态度硬质样品以发现弱点。通过此激励,我们提出了一个数据增强框架,被称为奥古曼克,统一多样性和硬度的两个方面。 Augmax首先将多个增强运算符进行随机样本,然后学习所选操作员的对抗性混合物。作为更强大的数据增强形式,奥格梅纳队导致了一个明显的增强输入分布,使模型培训更具挑战性。为了解决这个问题,我们进一步设计了一个解散的归一化模块,称为Dubin(双批次和实例规范化),其解除了奥古曼克斯出现的实例 - 明智的特征异质性。实验表明,Augmax-Dubin将显着改善分配的鲁棒性,优于现有技术,在CiFar10-C,CiFar100-C,微小Imagenet-C和Imagenet-C上以3.03%,3.49%,1.82%和0.71%。可提供代码和预磨料模型:https://github.com/vita-group/augmax。
translated by 谷歌翻译
在真实世界的机器学习应用中,可靠和安全的系统必须考虑超出标准测试设置精度的性能测量。这些其他目标包括分销(OOD)鲁棒性,预测一致性,对敌人的抵御能力,校准的不确定性估计,以及检测异常投入的能力。然而,提高这些目标的绩效通常是一种平衡行为,即今天的方法无法在不牺牲其他安全轴上的性能的情况下实现。例如,对抗性培训改善了对抗性鲁棒性,但急剧降低了其他分类器性能度量。同样,强大的数据增强和正则化技术往往提高鲁棒性,但损害异常检测,提出了对所有现有安全措施的帕累托改进是可能的。为满足这一挑战,我们设计了利用诸如分数形的图片的自然结构复杂性设计新的数据增强策略,这优于众多基线,靠近帕累托 - 最佳,并圆形提高安全措施。
translated by 谷歌翻译
用于计算机视觉任务的深度神经网络在越来越安全 - 严重和社会影响的应用中部署,激励需要在各种,天然存在的成像条件下关闭模型性能的差距。在包括对抗机器学习的多种上下文中尤为色难地使用的鲁棒性,然后指在自然诱导的图像损坏或改变下保持模型性能。我们进行系统审查,以识别,分析和总结当前定义以及对计算机愿景深度学习中的非对抗鲁棒性的进展。我们发现,该研究领域已经收到了相对于对抗机器学习的不成比例地注意力,但存在显着的稳健性差距,这些差距通常表现在性能下降中与对抗条件相似。为了在上下文中提供更透明的稳健性定义,我们引入了数据生成过程的结构因果模型,并将非对抗性鲁棒性解释为模型在损坏的图像上的行为,其对应于来自未纳入数据分布的低概率样本。然后,我们确定提高神经网络鲁棒性的关键架构,数据增强和优化策略。这种稳健性的这种因果观察表明,目前文献中的常见做法,关于鲁棒性策略和评估,对应于因果概念,例如软干预导致成像条件的决定性分布。通过我们的调查结果和分析,我们提供了对未来研究如何可能介意这种明显和显着的非对抗的鲁棒性差距的观点。
translated by 谷歌翻译
野外的深度学习(DL)的成功采用需要模型:(1)紧凑,(2)准确,(3)强大的分布换档。不幸的是,同时满足这些要求的努力主要是不成功的。这提出了一个重要问题:无法创建紧凑,准确,强大的深神经网络(卡)基础?为了回答这个问题,我们对流行的模型压缩技术进行了大规模分析,该技术揭示了几种有趣模式。值得注意的是,与传统的修剪方法相比(例如,微调和逐渐修剪),我们发现“彩票式风格”方法令人惊讶地用于生产卡,包括二进制牌。具体而言,我们能够创建极其紧凑的卡,与其较大的对应物相比,具有类似的测试精度和匹配(或更好)的稳健性 - 仅通过修剪和(可选)量化。利用卡的紧凑性,我们开发了一种简单的域 - 自适应测试时间合并方法(卡片 - 甲板),它使用门控模块根据与测试样本的光谱相似性动态地选择相应的卡片。该拟议的方法建立了一个“赢得胜利”的卡片,即在CiFar-10-C精度(即96.8%标准和92.75%的鲁棒)和CiFar-100- C精度(80.6%标准和71.3%的稳健性),内存使用率比非压缩基线(Https://github.com/robustbench/robustbench提供的预制卡和卡片 - 甲板)。最后,我们为我们的理论支持提供了理论支持经验研究结果。
translated by 谷歌翻译
In this paper we establish rigorous benchmarks for image classifier robustness. Our first benchmark, IMAGENET-C, standardizes and expands the corruption robustness topic, while showing which classifiers are preferable in safety-critical applications. Then we propose a new dataset called IMAGENET-P which enables researchers to benchmark a classifier's robustness to common perturbations. Unlike recent robustness research, this benchmark evaluates performance on common corruptions and perturbations not worst-case adversarial perturbations. We find that there are negligible changes in relative corruption robustness from AlexNet classifiers to ResNet classifiers. Afterward we discover ways to enhance corruption and perturbation robustness. We even find that a bypassed adversarial defense provides substantial common perturbation robustness. Together our benchmarks may aid future work toward networks that robustly generalize.
translated by 谷歌翻译
在测试时间适应(TTA)中,给定在某些源数据上培训的模型,目标是使其适应从不同分布的测试实例更好地预测。至关重要的是,TTA假设从目标分布到Finetune源模型,无法访问源数据或甚至从目标分布到任何其他标记/未标记的样本。在这项工作中,我们考虑TTA在更务实的设置中,我们称为SITA(单图像测试时间适应)。这里,在制作每个预测时,该模型只能访问给定的\ emph {单}测试实例,而不是实例的\ emph {批次}。通常在文献中被考虑。这是由逼真的情况激励,其中在按需时尚中需要推断,可能不会被延迟到“批量 - iFY”传入请求或者在没有范围的边缘设备(如移动电话中)发生推断批处理。 SITA的整个适应过程应在推理时间发生时非常快。为了解决这个问题,我们提出了一种新颖的AUGBN,用于仅需要转发传播的SITA设置。该方法可以为分类和分段任务的单个测试实例调整任何特征训练模型。 AUGBN估计仅使用具有标签保存的转换的一个前进通过的给定测试图像的看不见的测试分布的正常化统计。由于AUGBN不涉及任何反向传播,与其他最近的方法相比,它显着更快。据我们所知,这是仅使用单个测试图像解决此硬调整问题的第一个工作。尽管非常简单,但我们的框架能够在我们广泛的实验和消融研究中对目标实例上应用源模型来实现显着的性能增益。
translated by 谷歌翻译
We are concerned with a worst-case scenario in model generalization, in the sense that a model aims to perform well on many unseen domains while there is only one single domain available for training. We propose a new method named adversarial domain augmentation to solve this Outof-Distribution (OOD) generalization problem. The key idea is to leverage adversarial training to create "fictitious" yet "challenging" populations, from which a model can learn to generalize with theoretical guarantees. To facilitate fast and desirable domain augmentation, we cast the model training in a meta-learning scheme and use a Wasserstein Auto-Encoder (WAE) to relax the widely used worst-case constraint. Detailed theoretical analysis is provided to testify our formulation, while extensive experiments on multiple benchmark datasets indicate its superior performance in tackling single domain generalization.
translated by 谷歌翻译
为了在单一源领域的概括中取得成功,最大化合成域的多样性已成为最有效的策略之一。最近的许多成功都来自预先指定模型在培训期间暴露于多样性类型的方法,因此它最终可以很好地概括为新领域。但是,基于na \“基于多样性的增强也不能因为它们无法对大型域移动建模,或者因为预先指定的变换的跨度不能涵盖域概括中通常发生的转移类型。解决这个问题,我们提出了一个新颖的框架,该框架使用神经网络使用对抗学习的转换(ALT)来建模可欺骗分类器的合理但硬的图像转换。该网络是为每个批次的随机初始初始初始初始初始初始化的,并培训了固定数量的步骤。为了最大化分类错误。此外,我们在分类器对干净和转化的图像的预测之间实现一致性。通过广泛的经验分析,我们发现这种对抗性转换的新形式同时实现了多样性和硬度的目标,并超越了所有现有技术,以实现竞争性的所有技术单源域概括的基准。我们还显示了T HAT ALT可以自然地与现有的多样性模块合作,从而产生高度独特的源域,导致最先进的性能。
translated by 谷歌翻译
Deep neural networks achieve high prediction accuracy when the train and test distributions coincide. In practice though, various types of corruptions occur which deviate from this setup and cause severe performance degradations. Few methods have been proposed to address generalization in the presence of unforeseen domain shifts. In particular, digital noise corruptions arise commonly in practice during the image acquisition stage and present a significant challenge for current robustness approaches. In this paper, we propose a diverse Gaussian noise consistency regularization method for improving robustness of image classifiers under a variety of noise corruptions while still maintaining high clean accuracy. We derive bounds to motivate and understand the behavior of our Gaussian noise consistency regularization using a local loss landscape analysis. We show that this simple approach improves robustness against various unforeseen noise corruptions by 4.2-18.4% over adversarial training and other strong diverse data augmentation baselines across several benchmarks. Furthermore, when combined with state-of-the-art diverse data augmentation techniques, experiments against state-of-the-art show our method further improves robustness accuracy by 3.7% and uncertainty calibration by 5.5% for all common corruptions on several image classification benchmarks.
translated by 谷歌翻译
我们关注模型概括中最坏的情况,因为一个模型旨在在许多看不见的域上表现良好,而只有一个单个域可供训练。我们提出基于元学习的对抗领域的增强,以解决此范围泛化问题。关键思想是利用对抗性训练来创建“虚构的”但“具有挑战性”的人群,模型可以从中学会通过理论保证进行概括。为了促进快速和理想的域增强,我们将模型训练施加在元学习方案中,并使用Wasserstein自动编码器放宽广泛使用的最坏情况的约束。我们通过整合有效域概括的不确定性定量来进一步改善我们的方法。在多个基准数据集上进行的广泛实验表明其在解决单个领域概括方面的出色性能。
translated by 谷歌翻译
本文对实例分割模型进行了全面评估,这些模型与现实世界图像损坏以及室外图像集合,例如与培训数据集不同的设置捕获的图像。室外图像评估显示了模型的概括能力,现实世界应用的一个基本方面以及广泛研究的域适应性主题。当设计用于现实世界应用程序的实例分割模型并选择现成的预期模型以直接用于手头的任务时,这些提出的鲁棒性和泛化评估很重要。具体而言,这项基准研究包括最先进的网络架构,网络骨架,标准化层,从头开始训练的模型,从头开始与预处理的网络以及多任务培训对稳健性和概括的影响。通过这项研究,我们获得了一些见解。例如,我们发现组归一化增强了跨损坏的网络的鲁棒性,其中图像内容保持不变,但损坏却添加在顶部。另一方面,分批归一化改善了图像特征统计信息在不同数据集上的概括。我们还发现,单阶段探测器比其训练大小不太概括到更大的图像分辨率。另一方面,多阶段探测器可以轻松地用于不同尺寸的图像上。我们希望我们的全面研究能够激发更强大和可靠的实例细分模型的发展。
translated by 谷歌翻译
Distribution shifts, which often occur in the real world, degrade the accuracy of deep learning systems, and thus improving robustness is essential for practical applications. To improve robustness, we study an image enhancement method that generates recognition-friendly images without retraining the recognition model. We propose a novel image enhancement method, AugNet, which is based on differentiable data augmentation techniques and generates a blended image from many augmented images to improve the recognition accuracy under distribution shifts. In addition to standard data augmentations, AugNet can also incorporate deep neural network-based image transformation, which further improves the robustness. Because AugNet is composed of differentiable functions, AugNet can be directly trained with the classification loss of the recognition model. AugNet is evaluated on widely used image recognition datasets using various classification models, including Vision Transformer and MLP-Mixer. AugNet improves the robustness with almost no reduction in classification accuracy for clean images, which is a better result than the existing methods. Furthermore, we show that interpretation of distribution shifts using AugNet and retraining based on that interpretation can greatly improve robustness.
translated by 谷歌翻译
提高深神经网络(DNN)对分布(OOD)数据的准确性对于在现实世界应用中接受深度学习(DL)至关重要。已经观察到,分布(ID)与OOD数据的准确性遵循线性趋势和模型表现优于该基线非常罕见(并被称为“有效鲁棒”)。最近,已经开发出一些有前途的方法来提高OOD的鲁棒性:模型修剪,数据增强和结合或零射门评估大型预审预周化模型。但是,仍然对观察有效鲁棒性所需的OOD数据和模型属性的条件尚无清晰的了解。我们通过对多种方法进行全面的经验研究来解决这个问题,这些方法已知会影响OOD鲁棒性,对CIFAR-10和Imagenet的广泛自然和合成分布转移。特别是,我们通过傅立叶镜头观察“有效的鲁棒性难题”,并询问模型和OOD数据的光谱特性如何影响相应的有效鲁棒性。我们发现这个傅立叶镜头提供了一些深入的了解,为什么某些强大的模型,尤其是夹家族的模型,可以实现稳健性。但是,我们的分析还清楚地表明,没有已知的指标始终是对OOD鲁棒性的最佳解释(甚至是强烈的解释)。因此,为了帮助未来对OOD难题的研究,我们通过引入一组预处理的模型(固定的模型),以有效的稳健性(可公开可鲁棒)解决了差距,这些模型(固有的模型)以及不同级别的OOD稳健性。
translated by 谷歌翻译
分批归一化(BN)是一种无处不在的技术,用于训练深层神经网络,可加速其收敛以达到更高的准确性。但是,我们证明了BN具有根本的缺点:它激励该模型依赖于训练(内域)数据高度特定的低变义特征,从而损害了室外示例的概括性能。在这项工作中,我们首先表明在各种架构上删除BN层会导致较低的域外和腐败错误,而造成较高的内域错误,因此我们首先研究了这种现象。然后,我们提出了反平衡老师(CT),该方法利用与老师的老师一起利用同一模型的冷冻副本,通过通过一致性损失功能实质上调整其权重来实现学生网络对强大表示的学习。该正则化信号有助于CT在不可预见的数据变化中表现良好,即使没有从目标域中的信息如先前的工作中。从理论上讲,我们在过度参数化的线性回归设置中显示了为什么归一化导致模型对这种内域特征的依赖,并通过验证CT的功效来证明CT的功效,从而在稳健性基准(例如CIFAR-10-C,CIFAR-10-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100)上表现出了疗效。和VLCS。
translated by 谷歌翻译