对于神经网络的近似贝叶斯推断被认为是标准培训的强大替代品,通常在分发数据上提供良好的性能。然而,贝叶斯神经网络(BNNS)具有高保真近似推断的全批汉密尔顿蒙特卡罗在协变速下实现了较差的普遍,甚至表现不佳的经典估算。我们解释了这种令人惊讶的结果,展示了贝叶斯模型平均值实际上如何存在于协变量的情况下,特别是在输入特征中的线性依赖性导致缺乏后退的情况下。我们还展示了为什么相同的问题不会影响许多近似推理程序,或古典最大A-Bouthiori(地图)培训。最后,我们提出了改善BNN的鲁棒性的新型前锋,对许多协变量转变来源。
translated by 谷歌翻译
Accurate uncertainty quantification is a major challenge in deep learning, as neural networks can make overconfident errors and assign high confidence predictions to out-of-distribution (OOD) inputs. The most popular approaches to estimate predictive uncertainty in deep learning are methods that combine predictions from multiple neural networks, such as Bayesian neural networks (BNNs) and deep ensembles. However their practicality in real-time, industrial-scale applications are limited due to the high memory and computational cost. Furthermore, ensembles and BNNs do not necessarily fix all the issues with the underlying member networks. In this work, we study principled approaches to improve uncertainty property of a single network, based on a single, deterministic representation. By formalizing the uncertainty quantification as a minimax learning problem, we first identify distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data, as a necessary condition for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation. We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs with two simple changes: (1) applying spectral normalization to hidden weights to enforce bi-Lipschitz smoothness in representations and (2) replacing the last output layer with a Gaussian process layer. On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection. Furthermore, SNGP provides complementary benefits to popular techniques such as deep ensembles and data augmentation, making it a simple and scalable building block for probabilistic deep learning. Code is open-sourced at https://github.com/google/uncertainty-baselines
translated by 谷歌翻译
We propose SWA-Gaussian (SWAG), a simple, scalable, and general purpose approach for uncertainty representation and calibration in deep learning. Stochastic Weight Averaging (SWA), which computes the first moment of stochastic gradient descent (SGD) iterates with a modified learning rate schedule, has recently been shown to improve generalization in deep learning. With SWAG, we fit a Gaussian using the SWA solution as the first moment and a low rank plus diagonal covariance also derived from the SGD iterates, forming an approximate posterior distribution over neural network weights; we then sample from this Gaussian distribution to perform Bayesian model averaging. We empirically find that SWAG approximates the shape of the true posterior, in accordance with results describing the stationary distribution of SGD iterates. Moreover, we demonstrate that SWAG performs well on a wide variety of tasks, including out of sample detection, calibration, and transfer learning, in comparison to many popular alternatives including MC dropout, KFAC Laplace, SGLD, and temperature scaling.
translated by 谷歌翻译
贝叶斯神经网络(BNNS)通过提供认知不确定性的原则概率表示,有望在协变量转移下改善概括。但是,基于重量的BNN通常会在大规模体系结构和数据集的高计算复杂性上挣扎。基于节点的BNN最近被引入了可扩展的替代方案,该替代方案通过将每个隐藏节点乘以潜在的随机变量来诱导认知不确定性,同时学习权重的点刻度。在本文中,我们将这些潜在的噪声变量解释为训练过程中简单和域 - 不合时宜数据扰动的隐式表示,从而产生了由于输入损坏而导致协变量转移的BNN。我们观察到,隐性腐败的多样性取决于潜在变量的熵,并提出了一种直接的方法来增加训练期间这些变量的熵。我们评估了分布外图像分类基准测试的方法,并显示出由于输入扰动而导致的协变量转移下基于节点的BNN的不确定性估计。作为副作用,该方法还提供了针对嘈杂训练标签的鲁棒性。
translated by 谷歌翻译
贝叶斯范式有可能解决深度神经网络的核心问题,如校准和数据效率低差。唉,缩放贝叶斯推理到大量的空间通常需要限制近似。在这项工作中,我们表明它足以通过模型权重的小子集进行推动,以便获得准确的预测后断。另一个权重被保存为点估计。该子网推断框架使我们能够在这些子集上使用表现力,否则难以相容的后近近似。特别是,我们将子网线性化LAPLACE作为一种简单,可扩展的贝叶斯深度学习方法:我们首先使用线性化的拉普拉斯近似来获得所有重量的地图估计,然后在子网上推断出全协方差高斯后面。我们提出了一个子网选择策略,旨在最大限度地保护模型的预测性不确定性。经验上,我们的方法对整个网络的集合和较少的表达后近似进行了比较。
translated by 谷歌翻译
Modern machine learning methods including deep learning have achieved great success in predictive accuracy for supervised learning tasks, but may still fall short in giving useful estimates of their predictive uncertainty. Quantifying uncertainty is especially critical in real-world settings, which often involve input distributions that are shifted from the training distribution due to a variety of factors including sample bias and non-stationarity. In such settings, well calibrated uncertainty estimates convey information about when a model's output should (or should not) be trusted. Many probabilistic deep learning methods, including Bayesian-and non-Bayesian methods, have been proposed in the literature for quantifying predictive uncertainty, but to our knowledge there has not previously been a rigorous largescale empirical comparison of these methods under dataset shift. We present a largescale benchmark of existing state-of-the-art methods on classification problems and investigate the effect of dataset shift on accuracy and calibration. We find that traditional post-hoc calibration does indeed fall short, as do several other previous methods. However, some methods that marginalize over models give surprisingly strong results across a broad spectrum of tasks.
translated by 谷歌翻译
我们开发了ShiftMatch,这是贝叶斯神经网络(BNNS)中出现的新型训练数据依赖性的可能性(OOD)鲁棒性。ShiftMatch的灵感来自Izmailov等人的训练数据依赖性“ Empcov”先验。(2021a)并有效地与训练时的测试时间空间相关性匹配。至关重要的是,ShiftMatch旨在使神经网络训练保持不变,从而使其可以使用预定的BNN公开样品。使用预训练的HMC样品,ShiftMatch在CIFAR-10-C上具有强大的性能提高,效果优于Empcov先验,并且也许是第一种能够令人信服地超过普通的深层合奏的贝叶斯方法。可以将ShiftMatch与非乘式合奏等非乘坐方法集成,其中提供了较小但仍然相当大的性能改进。总体而言,贝叶斯的ShiftMatch具有比ShiftMatch的合奏的精度稍好一些,尽管它们都具有非常相似的对数。
translated by 谷歌翻译
用于估计模型不确定性的线性拉普拉斯方法在贝叶斯深度学习社区中引起了人们的重新关注。该方法提供了可靠的误差线,并接受模型证据的封闭式表达式,从而可以选择模型超参数。在这项工作中,我们检查了这种方法背后的假设,尤其是与模型选择结合在一起。我们表明,这些与一些深度学习的标准工具(构成近似方法和归一化层)相互作用,并为如何更好地适应这种经典方法对现代环境提出建议。我们为我们的建议提供理论支持,并在MLP,经典CNN,具有正常化层,生成性自动编码器和变压器的剩余网络上进行经验验证它们。
translated by 谷歌翻译
深度神经网络易于对异常值过度自信的预测。贝叶斯神经网络和深度融合都已显示在某种程度上减轻了这个问题。在这项工作中,我们的目标是通过提议预测由高斯混合模型的后续的高斯混合模型来结合这两种方法的益处,该高斯混合模型包括独立培训的深神经网络的LAPPALL近似的加权和。该方法可以与任何一组预先训练的网络一起使用,并且与常规合并相比,只需要小的计算和内存开销。理论上我们验证了我们的方法从训练数据中的培训数据和虚拟化的基本线上的标准不确定量级基准测试中的“远离”的过度控制。
translated by 谷歌翻译
We investigate the efficacy of treating all the parameters in a Bayesian neural network stochastically and find compelling theoretical and empirical evidence that this standard construction may be unnecessary. To this end, we prove that expressive predictive distributions require only small amounts of stochasticity. In particular, partially stochastic networks with only $n$ stochastic biases are universal probabilistic predictors for $n$-dimensional predictive problems. In empirical investigations, we find no systematic benefit of full stochasticity across four different inference modalities and eight datasets; partially stochastic networks can match and sometimes even outperform fully stochastic networks, despite their reduced memory costs.
translated by 谷歌翻译
随着我们远离数据,预测不确定性应该增加,因为各种各样的解释与鲜为人知的信息一致。我们引入了远距离感知的先验(DAP)校准,这是一种纠正训练域之外贝叶斯深度学习模型过度自信的方法。我们将DAPS定义为模型参数的先验分布,该模型参数取决于输入,通过其与训练集的距离度量。DAP校准对后推理方法不可知,可以作为后处理步骤进行。我们证明了其在各种分类和回归问题中对几个基线的有效性,包括旨在测试远离数据的预测分布质量的基准。
translated by 谷歌翻译
神经线性模型(NLM)是深度贝叶斯模型,通过从数据中学习特征,然后对这些特征进行贝叶斯线性回归来产生预测的不确定性。尽管他们受欢迎,但很少有作品专注于有条理地评估这些模型的预测性不确定性。在这项工作中,我们证明了NLMS的传统培训程序急剧低估了分发输入的不确定性,因此它们不能在风险敏感的应用中暂时部署。我们确定了这种行为的基本原因,并提出了一种新的培训框架,捕获下游任务的有用预测不确定性。
translated by 谷歌翻译
部署在医学成像任务上的机器学习模型必须配备分布外检测功能,以避免错误的预测。不确定依赖于深神经网络的分布外检测模型是否适合检测医学成像中的域移位。高斯流程可以通过其数学结构可靠地与分布数据点可靠地分开分发数据点。因此,我们为分层卷积高斯工艺提出了一个参数有效的贝叶斯层,该过程融合了在Wasserstein-2空间中运行的高斯过程,以可靠地传播不确定性。这直接用远距离的仿射操作员在分布中直接取代了高斯流程。我们对脑组织分割的实验表明,所得的架构接近了确定性分割算法(U-NET)的性能,而先前的层次高斯过程尚未实现。此外,通过将相同的分割模型应用于分布外数据(即具有病理学(例如脑肿瘤)的图像),我们表明我们的不确定性估计导致分布外检测,以优于以前的贝叶斯网络和以前的贝叶斯网络的功能基于重建的方法学习规范分布。为了促进未来的工作,我们的代码公开可用。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
已知神经网络模型加强隐藏的数据偏差,使它们不可靠且难以解释。我们试图通过在功能空间中引入归纳偏差来构建“知道他们不知道的内容”。我们表明贝叶斯神经网络的定期激活功能在网络权重和平移 - 不变,静止的高斯过程前沿建立了连接之间的连接。此外,我们表明,通过覆盖三角波和周期性的Relu激活功能,该链接超出了正弦波(傅里叶)激活。在一系列实验中,我们表明定期激活功能获得了域内数据的可比性,并捕获对深度神经网络中的扰动输入的灵敏度进行域名检测。
translated by 谷歌翻译
我们表明,著名的混音的有效性[Zhang等,2018],如果而不是将其用作唯一的学习目标,就可以进一步改善它,而是将其用作标准跨侧面损失的附加规则器。这种简单的变化不仅提供了太大的准确性,而且在大多数情况下,在各种形式的协变量转移和分布外检测实验下,在大多数情况下,混合量的预测不确定性估计质量都显着提高了。实际上,我们观察到混合物在检测出分布样本时可能会产生大量退化的性能,因为我们在经验上表现出来,因为它倾向于学习在整个过程中表现出高渗透率的模型。很难区分分布样本与近分离样本。为了显示我们的方法的功效(RegMixup),我们在视觉数据集(Imagenet&Cifar-10/100)上提供了详尽的分析和实验,并将其与最新方法进行比较,以进行可靠的不确定性估计。
translated by 谷歌翻译
我们有兴趣估计深神经网络的不确定性,这些神经网络在许多科学和工程问题中起着重要作用。在本文中,我们提出了一个引人注目的新发现,即具有相同权重初始化的神经网络的合奏,在数据集中受到持续偏差的转移而训练会产生稍微不一致的训练模型,其中预测的差异是强大的指标。认知不确定性。使用神经切线核(NTK),我们证明了这种现象是由于NTK不变的部分而发生的。由于这是通过微不足道的输入转换来实现的,因此我们表明可以使用单个神经网络(使用我们称为$ \ delta- $ uq的技术)来近似它,从而通过边缘化效果来估计预测周围的不确定性偏见。我们表明,$ \ delta- $ uq的不确定性估计值优于各种基准测试的当前方法 - 异常拒绝,分配变化下的校准以及黑匣子功能的顺序设计优化。
translated by 谷歌翻译
We introduce ensembles of stochastic neural networks to approximate the Bayesian posterior, combining stochastic methods such as dropout with deep ensembles. The stochastic ensembles are formulated as families of distributions and trained to approximate the Bayesian posterior with variational inference. We implement stochastic ensembles based on Monte Carlo dropout, DropConnect and a novel non-parametric version of dropout and evaluate them on a toy problem and CIFAR image classification. For CIFAR, the stochastic ensembles are quantitatively compared to published Hamiltonian Monte Carlo results for a ResNet-20 architecture. We also test the quality of the posteriors directly against Hamiltonian Monte Carlo simulations in a simplified toy model. Our results show that in a number of settings, stochastic ensembles provide more accurate posterior estimates than regular deep ensembles.
translated by 谷歌翻译
通过更好地了解多层网络的损失表面,我们可以构建更强大和准确的培训程序。最近发现,独立训练的SGD解决方案可以沿近持续训练损失的一维路径连接。在本文中,我们表明存在模式连接的单纯复合物,形成低损耗的多维歧管,连接许多独立培训的型号。灵感来自这一发现,我们展示了如何有效地建立快速合奏的单纯性复杂,表现优于准确性,校准和对数据集移位的鲁棒性的独立培训的深度集合。值得注意的是,我们的方法只需要几个训练时期来发现低损失单纯乳,从预先接受训练的解决方案开始。代码可在https://github.com/g-benton/loss-surface-simplexes中获得。
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译