持续(渐进或终身学习)学习的最新进展集中在预防遗忘可能导致灾难性后果的预防上,但是必须解决两项重大挑战。首先是评估所提出方法的鲁棒性。第二个是确保学习任务的安全性在很大程度上没有探索。本文介绍了一项关于持续学习的任务(包括当前和以前学到的任务)的敏感性的全面研究,这些任务容易忘记。对抗攻击的任务的这种脆弱性引发了数据完整性和隐私方面的深刻问题。我们考虑任务增量学习(任务-IL)方案,并探索三个基于正则化的实验,三个基于重播的实验以及一种基于答复和示例方法的混合技术。我们检查了这些方法的鲁棒性。特别是,我们考虑了我们证明属于当前或先前学习的任务的任何类都容易出现错误分类的情况。我们的观察结果突出了现有任务IL方法的潜在局限性。我们的实证研究建议,研究界考虑了拟议的持续学习方法的鲁棒性,并投入了大量努力来减轻灾难性的遗忘。
translated by 谷歌翻译
Generally, regularization-based continual learning models limit access to the previous task data to imitate the real-world setting which has memory and privacy issues. However, this introduces a problem in these models by not being able to track the performance on each task. In other words, current continual learning methods are vulnerable to attacks done on the previous task. We demonstrate the vulnerability of regularization-based continual learning methods by presenting simple task-specific training time adversarial attack that can be used in the learning process of a new task. Training data generated by the proposed attack causes performance degradation on a specific task targeted by the attacker. Experiment results justify the vulnerability proposed in this paper and demonstrate the importance of developing continual learning models that are robust to adversarial attack.
translated by 谷歌翻译
深度学习模型在众多图像识别,分类和重建任务中表现出令人难以置信的性能。虽然由于其预测能力而非常吸引人和有价值,但一个共同的威胁仍然挑战。一个专门训练的攻击者可以引入恶意输入扰动来欺骗网络,从而导致可能有害的错误预测。此外,当对手完全访问目标模型(白盒)时,这些攻击可以成功,即使这种访问受限(黑盒设置)。模型的集合可以防止这种攻击,但在其成员(攻击转移性)中的共享漏洞下可能是脆弱的。为此,这项工作提出了一种新的多样性促进深度集成的学习方法。该想法是促进巩固地图多样性(SMD)在集合成员上,以防止攻击者通过在我们的学习目标中引入额外的术语来实现所有集合成员。在培训期间,这有助于我们最大限度地减少模型炼塞之间的对齐,以减少共享成员漏洞,从而增加对对手的合并稳健性。我们经验展示了与中型和高强度白盒攻击相比,集合成员与改进性能之间的可转换性降低。此外,我们证明我们的方法与现有方法相结合,优于白色盒子和黑匣子攻击下的防御最先进的集合算法。
translated by 谷歌翻译
There has been a concurrent significant improvement in the medical images used to facilitate diagnosis and the performance of machine learning techniques to perform tasks such as classification, detection, and segmentation in recent years. As a result, a rapid increase in the usage of such systems can be observed in the healthcare industry, for instance in the form of medical image classification systems, where these models have achieved diagnostic parity with human physicians. One such application where this can be observed is in computer vision tasks such as the classification of skin lesions in dermatoscopic images. However, as stakeholders in the healthcare industry, such as insurance companies, continue to invest extensively in machine learning infrastructure, it becomes increasingly important to understand the vulnerabilities in such systems. Due to the highly critical nature of the tasks being carried out by these machine learning models, it is necessary to analyze techniques that could be used to take advantage of these vulnerabilities and methods to defend against them. This paper explores common adversarial attack techniques. The Fast Sign Gradient Method and Projected Descent Gradient are used against a Convolutional Neural Network trained to classify dermatoscopic images of skin lesions. Following that, it also discusses one of the most popular adversarial defense techniques, adversarial training. The performance of the model that has been trained on adversarial examples is then tested against the previously mentioned attacks, and recommendations to improve neural networks robustness are thus provided based on the results of the experiment.
translated by 谷歌翻译
时间序列异常检测在统计,经济学和计算机科学中进行了广泛的研究。多年来,使用基于深度学习的方法为时间序列异常检测提出了许多方法。这些方法中的许多方法都在基准数据集上显示了最先进的性能,给人一种错误的印象,即这些系统在许多实用和工业现实世界中都可以强大且可部署。在本文中,我们证明了最先进的异常检测方法的性能通过仅在传感器数据中添加小的对抗扰动来实质性地降解。我们使用不同的评分指标,例如预测错误,异常和分类评分,包括几个公共和私人数据集,从航空航天应用程序,服务器机器到发电厂的网络物理系统。在众所周知的对抗攻击中,来自快速梯度标志方法(FGSM)和预计梯度下降(PGD)方法,我们证明了最新的深神经网络(DNNS)和图形神经网络(GNNS)方法,这些方法声称这些方法是要对异常进行稳健,并且可能已集成在现实生活中,其性能下降到低至0%。据我们最好的理解,我们首次证明了针对对抗攻击的异常检测系统的脆弱性。这项研究的总体目标是提高对时间序列异常检测器的对抗性脆弱性的认识。
translated by 谷歌翻译
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples-inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. 1
translated by 谷歌翻译
深度神经网络很容易被称为对抗攻击的小扰动都愚弄。对抗性培训(AT)是一种近似解决了稳健的优化问题,以最大限度地减少最坏情况损失,并且被广泛认为是对这种攻击的最有效的防御。由于产生了强大的对抗性示例的高计算时间,已经提出了单步方法来减少培训时间。然而,这些方法遭受灾难性的过度装备,在训练期间侵犯准确度下降。虽然提出了改进,但它们增加了培训时间和稳健性远非多步骤。我们为FW优化(FW-AT)开发了对抗的对抗培训的理论框架,揭示了损失景观与$ \ ell_2 $失真之间的几何连接。我们分析地表明FW攻击的高变形相当于沿攻击路径的小梯度变化。然后在各种深度神经网络架构上进行实验证明,$ \ ell \ infty $攻击对抗强大的模型实现近乎最大的$ \ ell_2 $失真,而标准网络具有较低的失真。此外,实验表明,灾难性的过度拟合与FW攻击的低变形强烈相关。为了展示我们理论框架的效用,我们开发FW-AT-Adap,这是一种新的逆势训练算法,它使用简单的失真度量来调整攻击步骤的数量,以提高效率而不会影响鲁棒性。 FW-AT-Adapt提供培训时间以单步快速分配方法,并改善了在白色盒子和黑匣子设置中的普发内精度的最小损失和多步PGD之间的差距。
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)在各种现实世界的网络安全应用程序(例如网络和多媒体安全)中表现出了有希望的性能。但是,CNN结构的潜在脆弱性构成了主要的安全问题,因此不适合用于以安全为导向的应用程序,包括此类计算机网络。保护这些体系结构免受对抗性攻击,需要使用挑战性攻击的安全体系结构。在这项研究中,我们提出了一种基于合奏分类器的新型体系结构,该结构将1级分类(称为1C)的增强安全性与在没有攻击的情况下的传统2级分类(称为2C)的高性能结合在一起。我们的体系结构称为1.5级(Spritz-1.5c)分类器,并使用最终密度分类器,一个2C分类器(即CNNS)和两个并行1C分类器(即自动编码器)构造。在我们的实验中,我们通过在各种情况下考虑八次可能的对抗性攻击来评估我们提出的架构的鲁棒性。我们分别对2C和Spritz-1.5c体系结构进行了这些攻击。我们研究的实验结果表明,I-FGSM攻击对2C分类器的攻击成功率(ASR)是N-Baiot数据集训练的2C分类器的0.9900。相反,Spritz-1.5C分类器的ASR为0.0000。
translated by 谷歌翻译
许多最先进的ML模型在各种任务中具有优于图像分类的人类。具有如此出色的性能,ML模型今天被广泛使用。然而,存在对抗性攻击和数据中毒攻击的真正符合ML模型的稳健性。例如,Engstrom等人。证明了最先进的图像分类器可以容易地被任意图像上的小旋转欺骗。由于ML系统越来越纳入安全性和安全敏感的应用,对抗攻击和数据中毒攻击构成了相当大的威胁。本章侧重于ML安全的两个广泛和重要的领域:对抗攻击和数据中毒攻击。
translated by 谷歌翻译
恶意软件(恶意软件)分类为持续学习(CL)制度提供了独特的挑战,这是由于每天收到的新样本的数量以及恶意软件的发展以利用新漏洞。在典型的一天中,防病毒供应商将获得数十万个独特的软件,包括恶意和良性,并且在恶意软件分类器的一生中,有超过十亿个样品很容易积累。鉴于问题的规模,使用持续学习技术的顺序培训可以在减少培训和存储开销方面提供可观的好处。但是,迄今为止,还没有对CL应用于恶意软件分类任务的探索。在本文中,我们研究了11种应用于三个恶意软件任务的CL技术,涵盖了常见的增量学习方案,包括任务,类和域增量学习(IL)。具体而言,使用两个现实的大规模恶意软件数据集,我们评估了CL方法在二进制恶意软件分类(domain-il)和多类恶意软件家庭分类(Task-IL和类IL)任务上的性能。令我们惊讶的是,在几乎所有情况下,持续的学习方法显着不足以使训练数据的幼稚关节重播 - 在某些情况下,将精度降低了70个百分点以上。与关节重播相比,有选择性重播20%的存储数据的一种简单方法可以实现更好的性能,占训练时间的50%。最后,我们讨论了CL技术表现出乎意料差的潜在原因,希望它激发进一步研究在恶意软件分类域中更有效的技术。
translated by 谷歌翻译
对抗培训,培训具有对抗性数据的深层学习模型的过程,是深度学习模型中最成功的对抗性防御方法之一。我们发现,如果我们在推理阶段微调这一模型以适应对抗的输入,可以进一步提高对普遍训练模型的白箱攻击的鲁棒性,以适应对手输入,其中包含额外信息。我们介绍了一种算法,即“邮政列车”在原始输出类和“邻居”类之间的推断阶段的模型,具有现有培训数据。预训练的FAST-FGSM CIFAR10分类器基础模型对白盒预计梯度攻击(PGD)的准确性可以通过我们的算法显着提高46.8%至64.5%。
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
基于深度神经网络(DNN)的智能信息(IOT)系统已被广泛部署在现实世界中。然而,发现DNNS易受对抗性示例的影响,这提高了人们对智能物联网系统的可靠性和安全性的担忧。测试和评估IOT系统的稳健性成为必要和必要。最近已经提出了各种攻击和策略,但效率问题仍未纠正。现有方法是计算地广泛或耗时,这在实践中不适用。在本文中,我们提出了一种称为攻击启发GaN(AI-GaN)的新框架,在有条件地产生对抗性实例。曾经接受过培训,可以有效地给予对抗扰动的输入图像和目标类。我们在白盒设置的不同数据集中应用AI-GaN,黑匣子设置和由最先进的防御保护的目标模型。通过广泛的实验,AI-GaN实现了高攻击成功率,优于现有方法,并显着降低了生成时间。此外,首次,AI-GaN成功地缩放到复杂的数据集。 Cifar-100和Imagenet,所有课程中的成功率约为90美元。
translated by 谷歌翻译
在过去的几十年中,人工智能的兴起使我们有能力解决日常生活中最具挑战性的问题,例如癌症的预测和自主航行。但是,如果不保护对抗性攻击,这些应用程序可能不会可靠。此外,最近的作品表明,某些对抗性示例可以在不同的模型中转移。因此,至关重要的是避免通过抵抗对抗性操纵的强大模型进行这种可传递性。在本文中,我们提出了一种基于特征随机化的方法,该方法抵抗了八次针对测试阶段深度学习模型的对抗性攻击。我们的新方法包括改变目标网络分类器中的训练策略并选择随机特征样本。我们认为攻击者具有有限的知识和半知识条件,以进行最普遍的对抗性攻击。我们使用包括现实和合成攻击的众所周知的UNSW-NB15数据集评估了方法的鲁棒性。之后,我们证明我们的策略优于现有的最新方法,例如最强大的攻击,包括针对特定的对抗性攻击进行微调网络模型。最后,我们的实验结果表明,我们的方法可以确保目标网络并抵抗对抗性攻击的转移性超过60%。
translated by 谷歌翻译
通过对数据集的样本应用小而有意的最差情况扰动可以产生对抗性输入,这导致甚至最先进的深神经网络,以高信任输出不正确的答案。因此,开发了一些对抗防御技术来提高模型的安全性和稳健性,并避免它们被攻击。逐渐,攻击者和捍卫者之间的游戏类似的竞争,其中两个玩家都会试图在最大化自己的收益的同时互相反对发挥最佳策略。为了解决游戏,每个玩家都基于对对手的战略选择的预测来选择反对对手的最佳策略。在这项工作中,我们正处于防守方面,以申请防止攻击的游戏理论方法。我们使用两个随机化方法,随机初始化和随机激活修剪,以创造网络的多样性。此外,我们使用一种去噪技术,超级分辨率,通过在攻击前预处理图像来改善模型的鲁棒性。我们的实验结果表明,这三种方法可以有效提高深度学习神经网络的鲁棒性。
translated by 谷歌翻译
最近对机器学习(ML)模型的攻击,例如逃避攻击,具有对抗性示例,并通过提取攻击窃取了一些模型,构成了几种安全性和隐私威胁。先前的工作建议使用对抗性训练从对抗性示例中保护模型,以逃避模型的分类并恶化其性能。但是,这种保护技术会影响模型的决策边界及其预测概率,因此可能会增加模型隐私风险。实际上,仅使用对模型预测输出的查询访问的恶意用户可以提取它并获得高智能和高保真替代模型。为了更大的提取,这些攻击利用了受害者模型的预测概率。实际上,所有先前关于提取攻击的工作都没有考虑到出于安全目的的培训过程中的变化。在本文中,我们提出了一个框架,以评估具有视觉数据集对对抗训练的模型的提取攻击。据我们所知,我们的工作是第一个进行此类评估的工作。通过一项广泛的实证研究,我们证明了受对抗训练的模型比在自然训练情况下获得的模型更容易受到提取攻击的影响。他们可以达到高达$ \ times1.2 $更高的准确性和同意,而疑问低于$ \ times0.75 $。我们还发现,与从自然训练的(即标准)模型中提取的DNN相比,从鲁棒模型中提取的对抗性鲁棒性能力可通过提取攻击(即从鲁棒模型提取的深神经网络(DNN)提取的深神网络(DNN))传递。
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
深度学习的进步使得广泛的有希望的应用程序。然而,这些系统容易受到对抗机器学习(AML)攻击的影响;对他们的意见的离前事实制作的扰动可能导致他们错误分类。若干最先进的对抗性攻击已经证明他们可以可靠地欺骗分类器,使这些攻击成为一个重大威胁。对抗性攻击生成算法主要侧重于创建成功的例子,同时控制噪声幅度和分布,使检测更加困难。这些攻击的潜在假设是脱机产生的对抗噪声,使其执行时间是次要考虑因素。然而,最近,攻击者机会自由地产生对抗性示例的立即对抗攻击已经可能。本文介绍了一个新问题:我们如何在实时约束下产生对抗性噪音,以支持这种实时对抗攻击?了解这一问题提高了我们对这些攻击对实时系统构成的威胁的理解,并为未来防御提供安全评估基准。因此,我们首先进行对抗生成算法的运行时间分析。普遍攻击脱机产生一般攻击,没有在线开销,并且可以应用于任何输入;然而,由于其一般性,他们的成功率是有限的。相比之下,在特定输入上工作的在线算法是计算昂贵的,使它们不适合在时间约束下的操作。因此,我们提出房间,一种新型实时在线脱机攻击施工模型,其中离线组件用于预热在线算法,使得可以在时间限制下产生高度成功的攻击。
translated by 谷歌翻译
有必要提高某些特殊班级的表现,或者特别保护它们免受对抗学习的攻击。本文提出了一个将成本敏感分类和对抗性学习结合在一起的框架,以训练可以区分受保护和未受保护的类的模型,以使受保护的类别不太容易受到对抗性示例的影响。在此框架中,我们发现在训练深神经网络(称为Min-Max属性)期间,一个有趣的现象,即卷积层中大多数参数的绝对值。基于这种最小的最大属性,该属性是在随机分布的角度制定和分析的,我们进一步建立了一个针对对抗性示例的新防御模型,以改善对抗性鲁棒性。构建模型的一个优点是,它的性能比标准模型更好,并且可以与对抗性训练相结合,以提高性能。在实验上证实,对于所有类别的平均准确性,我们的模型在没有发生攻击时几乎与现有模型一样,并且在发生攻击时比现有模型更好。具体而言,关于受保护类的准确性,提议的模型比发生攻击时的现有模型要好得多。
translated by 谷歌翻译