Generally, regularization-based continual learning models limit access to the previous task data to imitate the real-world setting which has memory and privacy issues. However, this introduces a problem in these models by not being able to track the performance on each task. In other words, current continual learning methods are vulnerable to attacks done on the previous task. We demonstrate the vulnerability of regularization-based continual learning methods by presenting simple task-specific training time adversarial attack that can be used in the learning process of a new task. Training data generated by the proposed attack causes performance degradation on a specific task targeted by the attacker. Experiment results justify the vulnerability proposed in this paper and demonstrate the importance of developing continual learning models that are robust to adversarial attack.
translated by 谷歌翻译
持续(渐进或终身学习)学习的最新进展集中在预防遗忘可能导致灾难性后果的预防上,但是必须解决两项重大挑战。首先是评估所提出方法的鲁棒性。第二个是确保学习任务的安全性在很大程度上没有探索。本文介绍了一项关于持续学习的任务(包括当前和以前学到的任务)的敏感性的全面研究,这些任务容易忘记。对抗攻击的任务的这种脆弱性引发了数据完整性和隐私方面的深刻问题。我们考虑任务增量学习(任务-IL)方案,并探索三个基于正则化的实验,三个基于重播的实验以及一种基于答复和示例方法的混合技术。我们检查了这些方法的鲁棒性。特别是,我们考虑了我们证明属于当前或先前学习的任务的任何类都容易出现错误分类的情况。我们的观察结果突出了现有任务IL方法的潜在局限性。我们的实证研究建议,研究界考虑了拟议的持续学习方法的鲁棒性,并投入了大量努力来减轻灾难性的遗忘。
translated by 谷歌翻译
人类可以不断学习新知识。但是,在学习新任务后,机器学习模型在以前的任务上的性能急剧下降。认知科学指出,类似知识的竞争是遗忘的重要原因。在本文中,我们根据大脑的元学习和关联机制设计了一个用于终身学习的范式。它从两个方面解决了问题:提取知识和记忆知识。首先,我们通过背景攻击破坏样本的背景分布,从而增强了模型以提取每个任务的关键特征。其次,根据增量知识和基础知识之间的相似性,我们设计了增量知识的自适应融合,这有助于模型将能力分配到不同困难的知识。理论上分析了所提出的学习范式可以使不同任务的模型收敛到相同的最优值。提出的方法已在MNIST,CIFAR100,CUB200和ImagEnet100数据集上进行了验证。
translated by 谷歌翻译
人类在整个生命周期中不断学习,通过积累多样化的知识并为未来的任务进行微调。当出现类似目标时,神经网络会遭受灾难性忘记,在学习过程中跨顺序任务跨好任务的数据分布是否不固定。解决此类持续学习(CL)问题的有效方法是使用超网络为目标网络生成任务依赖权重。但是,现有基于超网的方法的持续学习性能受到整个层之间权重的独立性的假设,以维持参数效率。为了解决这一限制,我们提出了一种新颖的方法,该方法使用依赖关系保留超网络来为目标网络生成权重,同时还保持参数效率。我们建议使用基于复发的神经网络(RNN)的超网络,该网络可以有效地生成层权重,同时允许在它们的依赖关系中。此外,我们为基于RNN的超网络提出了新颖的正则化和网络增长技术,以进一步提高持续的学习绩效。为了证明所提出的方法的有效性,我们对几个图像分类持续学习任务和设置进行了实验。我们发现,基于RNN HyperNetworks的建议方法在所有这些CL设置和任务中都优于基准。
translated by 谷歌翻译
为了检测现有的隐志算法,最近的切解方法通常在数据集上训练卷积神经网络(CNN)模型,该模型由相应的配对盖/stego图像组成。但是,对于那些切断的工具,完全重新训练CNN模型以使其对现有的隐志算法和新的新出现的隐志算法有效,这是无效和不切实际的。因此,现有的切解模型通常缺乏新的隐志算法的动态扩展性,这限制了其在现实情况下的应用。为了解决这个问题,我们建议基于切解分析的基于基于的参数重要性估计(APIE)学习方案。在此方案中,当对新的截然算法生成的新图像数据集进行训练时,其网络参数将有效,有效地更新,并充分考虑其在先前的培训过程中评估其重要性。这种方法可以指导切解模型来学习新的隐志算法的模式,而不会显着降低针对先前的横向志算法的可检测性。实验结果表明,提出的方案具有新兴新兴志志算法的可扩展性。
translated by 谷歌翻译
本文研究了在连续学习框架中使用分类网络的固定架构培训深度学习模型的优化算法的新设计。训练数据是非平稳的,非平稳性是由一系列不同的任务施加的。我们首先分析了一个仅在隔离的学习任务的深层模型,并在网络参数空间中识别一个区域,其中模型性能接近恢复的最佳。我们提供的经验证据表明该区域类似于沿收敛方向扩展的锥体。我们研究了融合后优化器轨迹的主要方向,并表明沿着一些顶级主要方向旅行可以迅速将参数带到锥体之外,但其余方向并非如此。我们认为,当参数被限制以保持在训练过程中迄今为止遇到的单个任务的相交中,可以缓解持续学习环境中的灾难性遗忘。基于此观察结果,我们介绍了我们的方向约束优化(DCO)方法,在每个任务中,我们引入一个线性自动编码器以近似其相应的顶部禁止主要方向。然后将它们以正规化术语的形式合并到损失函数中,以便在不忘记的情况下学习即将到来的任务。此外,为了随着任务数量的增加而控制内存的增长,我们提出了一种称为压缩DCO(DCO-comp)的算法的内存效率版本,该版本为存储所有自动编码器的固定大小分配了存储器。我们从经验上证明,与其他基于最新正规化的持续学习方法相比,我们的算法表现出色。
translated by 谷歌翻译
由于其非参数化干扰和灾难性遗忘的非参数化能力,核心连续学习\ Cite {derakhshani2021kernel}最近被成为一个强大的持续学习者。不幸的是,它的成功是以牺牲一个明确的内存为代价来存储来自过去任务的样本,这妨碍了具有大量任务的连续学习设置的可扩展性。在本文中,我们介绍了生成的内核持续学习,探讨了生成模型与内核之间的协同作用以进行持续学习。生成模型能够生产用于内核学习的代表性样本,其消除了在内核持续学习中对内存的依赖性。此外,由于我们仅在生成模型上重播,我们避免了与在整个模型上需要重播的先前的方法相比,在计算上更有效的情况下避免任务干扰。我们进一步引入了监督的对比正规化,使我们的模型能够为更好的基于内核的分类性能产生更具辨别性样本。我们对三种广泛使用的连续学习基准进行了广泛的实验,展示了我们贡献的能力和益处。最值得注意的是,在具有挑战性的SplitCifar100基准测试中,只需一个简单的线性内核,我们获得了与内核连续学习的相同的准确性,对于内存的十分之一,或者对于相同的内存预算的10.1%的精度增益。
translated by 谷歌翻译
持续学习旨在通过以在线学习方式利用过去获得的知识,同时能够在所有以前的任务上表现良好,从而学习一系列任务,这对人工智能(AI)系统至关重要,因此持续学习与传统学习模式相比,更适合大多数现实和复杂的应用方案。但是,当前的模型通常在每个任务上的类标签上学习一个通用表示基础,并选择有效的策略来避免灾难性的遗忘。我们假设,仅从获得的知识中选择相关且有用的零件比利用整个知识更有效。基于这一事实,在本文中,我们提出了一个新框架,名为“选择相关的在线持续学习知识(SRKOCL),该框架结合了一种额外的有效频道注意机制,以选择每个任务的特定相关知识。我们的模型还结合了经验重播和知识蒸馏,以避免灾难性的遗忘。最后,在不同的基准上进行了广泛的实验,竞争性实验结果表明,我们提出的SRKOCL是针对最先进的承诺方法。
translated by 谷歌翻译
持续学习旨在快速,不断地从一系列任务中学习当前的任务。与其他类型的方法相比,基于经验重播的方法表现出了极大的优势来克服灾难性的遗忘。该方法的一个常见局限性是上一个任务和当前任务之间的数据不平衡,这将进一步加剧遗忘。此外,如何在这种情况下有效解决稳定性困境也是一个紧迫的问题。在本文中,我们通过提出一个通过多尺度知识蒸馏和数据扩展(MMKDDA)提出一个名为Meta学习更新的新框架来克服这些挑战。具体而言,我们应用多尺度知识蒸馏来掌握不同特征级别的远程和短期空间关系的演变,以减轻数据不平衡问题。此外,我们的方法在在线持续训练程序中混合了来自情节记忆和当前任务的样品,从而减轻了由于概率分布的变化而减轻了侧面影响。此外,我们通过元学习更新来优化我们的模型,该更新诉诸于前面所看到的任务数量,这有助于保持稳定性和可塑性之间的更好平衡。最后,我们对四个基准数据集的实验评估显示了提出的MMKDDA框架对其他流行基线的有效性,并且还进行了消融研究,以进一步分析每个组件在我们的框架中的作用。
translated by 谷歌翻译
持续学习(CL)旨在制定模仿人类能力顺序学习新任务的能力,同时能够保留从过去经验获得的知识。在本文中,我们介绍了内存约束在线连续学习(MC-OCL)的新问题,这对存储器开销对可能算法可以用于避免灾难性遗忘的记忆开销。最多,如果不是全部,之前的CL方法违反了这些约束,我们向MC-OCL提出了一种算法解决方案:批量蒸馏(BLD),基于正则化的CL方法,有效地平衡了稳定性和可塑性,以便学习数据流,同时保留通过蒸馏解决旧任务的能力。我们在三个公开的基准测试中进行了广泛的实验评估,经验证明我们的方法成功地解决了MC-OCL问题,并实现了需要更高内存开销的先前蒸馏方法的可比准确性。
translated by 谷歌翻译
持续学习背后的主流范例一直在使模型参数调整到非静止数据分布,灾难性遗忘是中央挑战。典型方法在测试时间依赖排练缓冲区或已知的任务标识,以检索学到的知识和地址遗忘,而这项工作呈现了一个新的范例,用于持续学习,旨在训练更加简洁的内存系统而不在测试时间访问任务标识。我们的方法学会动态提示(L2P)预先训练的模型,以在不同的任务转换下顺序地学习任务。在我们提出的框架中,提示是小型可学习参数,这些参数在内存空间中保持。目标是优化提示,以指示模型预测并明确地管理任务不变和任务特定知识,同时保持模型可塑性。我们在流行的图像分类基准下进行全面的实验,具有不同挑战的持续学习环境,其中L2P始终如一地优于现有最先进的方法。令人惊讶的是,即使没有排练缓冲区,L2P即使没有排练缓冲,L2P也能实现竞争力的结果,并直接适用于具有挑战性的任务不可行的持续学习。源代码在https://github.com/google-Research/l2p中获得。
translated by 谷歌翻译
With rapid progress and significant successes in a wide spectrum of applications, deep learning is being applied in many safety-critical environments. However, deep neural networks have been recently found vulnerable to well-designed input samples, called adversarial examples. Adversarial perturbations are imperceptible to human but can easily fool deep neural networks in the testing/deploying stage. The vulnerability to adversarial examples becomes one of the major risks for applying deep neural networks in safety-critical environments. Therefore, attacks and defenses on adversarial examples draw great attention. In this paper, we review recent findings on adversarial examples for deep neural networks, summarize the methods for generating adversarial examples, and propose a taxonomy of these methods. Under the taxonomy, applications for adversarial examples are investigated. We further elaborate on countermeasures for adversarial examples. In addition, three major challenges in adversarial examples and the potential solutions are discussed.
translated by 谷歌翻译
先前的研究证明,黑盒模型的功能可以被完全概率输出偷走。但是,在更实用的硬牌环境下,我们观察到现有的方法遭受灾难性的性能降解。我们认为这是由于概率预测中缺乏丰富的信息以及硬标签引起的过度拟合。为此,我们提出了一种称为\ emph {black-box disector}的新型硬标签模型窃取方法,该方法由两个基于擦除的模块组成。一种是一种凸轮驱动的擦除策略,旨在增加受害者模型中隐藏在硬标签中的信息能力。另一个是一个基于随机的自我知识蒸馏模块,该模块利用替代模型的软标签来减轻过度拟合。在四个广泛使用的数据集上进行的广泛实验始终表明,我们的方法优于最先进的方法,最多提高了$ 8.27 \%$。我们还验证了我们方法对现实世界API和防御方法的有效性和实际潜力。此外,我们的方法促进了其他下游任务,\ emph {i.e。},转移对抗攻击。
translated by 谷歌翻译
对抗性持续学习对于持续学习问题有效,因为存在特征对齐过程,从而产生了对灾难性遗忘问题敏感性低的任务不变特征。然而,ACL方法施加了相当大的复杂性,因为它依赖于特定于任务的网络和歧视器。它还经历了一个迭代培训过程,该过程不适合在线(单周)持续学习问题。本文提出了一种可扩展的对抗性持续学习(比例)方法,提出了一个参数生成器,将共同特征转换为特定于任务的功能,并在对抗性游戏中进行单个歧视器,以诱导共同的特征。训练过程是在元学习时尚中使用三个损失功能组合进行的。缩放比例优于明显的基线,其准确性和执行时间都明显。
translated by 谷歌翻译
古典机器学习者仅设计用于解决一项任务,而无需采用新的新兴任务或课程,而这种能力在现实世界中更实用和人类。为了解决这种缺点,阐述了持续的机器学习者,以表彰使用域和班级的任务流,不同的任务之间的转变。在本文中,我们提出了一种基于一个基于对比的连续学习方法,其能够处理多个持续学习场景。具体地,我们通过特征传播和对比表示学习来对准当前和先前的表示空间来弥合不同任务之间的域移位。为了进一步减轻特征表示的类别的班次,利用了监督的对比损失以使与不同类别的相同类的示例嵌入。广泛的实验结果表明,与一组尖端连续学习方法相比,六个连续学习基准中提出的方法的出色性能。
translated by 谷歌翻译
增量任务学习(ITL)是一个持续学习的类别,试图培训单个网络以进行多个任务(一个接一个),其中每个任务的培训数据仅在培训该任务期间可用。当神经网络接受较新的任务培训时,往往会忘记旧任务。该特性通常被称为灾难性遗忘。为了解决此问题,ITL方法使用情节内存,参数正则化,掩盖和修剪或可扩展的网络结构。在本文中,我们提出了一个基于低级别分解的新的增量任务学习框架。特别是,我们表示每一层的网络权重作为几个等级1矩阵的线性组合。为了更新新任务的网络,我们学习一个排名1(或低级别)矩阵,并将其添加到每一层的权重。我们还引入了一个其他选择器向量,该向量将不同的权重分配给对先前任务的低级矩阵。我们表明,就准确性和遗忘而言,我们的方法的表现比当前的最新方法更好。与基于情节的内存和基于面具的方法相比,我们的方法还提供了更好的内存效率。我们的代码将在https://github.com/csiplab/task-increment-rank-update.git上找到。
translated by 谷歌翻译
Continual Learning is considered a key step toward next-generation Artificial Intelligence. Among various methods, replay-based approaches that maintain and replay a small episodic memory of previous samples are one of the most successful strategies against catastrophic forgetting. However, since forgetting is inevitable given bounded memory and unbounded tasks, how to forget is a problem continual learning must address. Therefore, beyond simply avoiding catastrophic forgetting, an under-explored issue is how to reasonably forget while ensuring the merits of human memory, including 1. storage efficiency, 2. generalizability, and 3. some interpretability. To achieve these simultaneously, our paper proposes a new saliency-augmented memory completion framework for continual learning, inspired by recent discoveries in memory completion separation in cognitive neuroscience. Specifically, we innovatively propose to store the part of the image most important to the tasks in episodic memory by saliency map extraction and memory encoding. When learning new tasks, previous data from memory are inpainted by an adaptive data generation module, which is inspired by how humans complete episodic memory. The module's parameters are shared across all tasks and it can be jointly trained with a continual learning classifier as bilevel optimization. Extensive experiments on several continual learning and image classification benchmarks demonstrate the proposed method's effectiveness and efficiency.
translated by 谷歌翻译
从非稳定性数据流不断学习是过去几年中日益普及的具有挑战性的研究课题。能够在高效,有效和可扩展的方式中不断地学习,适应和推广,是人工智能系统可持续发展的基础。然而,以持续学习的代理为中心的视图需要直接学习原始数据,这限制了独立代理,效率和当前方法的隐私之间的相互作用。相反,我们认为,持续学习系统应该利用经过培训的模型的形式利用压缩信息的可用性。在本文中,我们介绍并将一个名为“EX-Modul持续学习”(EXML)的新范式介绍并形式化,其中代理从一系列先前培训的模型而不是原始数据学习。我们进一步贡献了三种前模型连续学习算法和包括三个数据集(Mnist,CiFar-10和Core50)的经验设置,以及所提出的算法广泛测试的八种情况。最后,我们突出了前模式范式的特点,我们指出了有趣的未来研究方向。
translated by 谷歌翻译
对于人工学习系统,随着时间的流逝,从数据流进行持续学习至关重要。对监督持续学习的新兴研究取得了长足的进步,而无监督学习中灾难性遗忘的研究仍然是空白的。在无监督的学习方法中,自居民学习方法在视觉表示上显示出巨大的潜力,而无需大规模标记的数据。为了改善自我监督学习的视觉表示,需要更大和更多的数据。在现实世界中,始终生成未标记的数据。这种情况为学习自我监督方法提供了巨大的优势。但是,在当前的范式中,将先前的数据和当前数据包装在一起并再次培训是浪费时间和资源。因此,迫切需要一种持续的自我监督学习方法。在本文中,我们首次尝试通过提出彩排方法来实现连续的对比自我监督学习,从而使以前的数据保持了一些典范。我们通过模仿旧网络通过一组保存的示例,通过模仿旧网络推断出的相似性分数分布,而不是将保存的示例与当前数据集结合到当前的培训数据集,而是利用自我监督的知识蒸馏将对比度信息传输到当前网络。此外,我们建立一个额外的样本队列,以帮助网络区分以前的数据和当前数据并在学习自己的功能表示时防止相互干扰。实验结果表明,我们的方法在CIFAR100和Imagenet-Sub上的性能很好。与基线的学习任务无需采用任何技术,我们将图像分类在CIFAR100上提高了1.60%,Imagenet-Sub上的2.86%,在10个增量步骤设置下对Imagenet-Full进行1.29%。
translated by 谷歌翻译
Deep learning has shown impressive performance on hard perceptual problems. However, researchers found deep learning systems to be vulnerable to small, specially crafted perturbations that are imperceptible to humans. Such perturbations cause deep learning systems to mis-classify adversarial examples, with potentially disastrous consequences where safety or security is crucial. Prior defenses against adversarial examples either targeted specific attacks or were shown to be ineffective. We propose MagNet, a framework for defending neural network classifiers against adversarial examples. MagNet neither modifies the protected classifier nor requires knowledge of the process for generating adversarial examples. MagNet includes one or more separate detector networks and a reformer network. The detector networks learn to differentiate between normal and adversarial examples by approximating the manifold of normal examples. Since they assume no specific process for generating adversarial examples, they generalize well. The reformer network moves adversarial examples towards the manifold of normal examples, which is effective for correctly classifying adversarial examples with small perturbation. We discuss the intrinsic difficulties in defending against whitebox attack and propose a mechanism to defend against graybox attack. Inspired by the use of randomness in cryptography, we use diversity to strengthen MagNet. We show empirically that Mag-Net is effective against the most advanced state-of-the-art attacks in blackbox and graybox scenarios without sacrificing false positive rate on normal examples. CCS CONCEPTS• Security and privacy → Domain-specific security and privacy architectures; • Computing methodologies → Neural networks;
translated by 谷歌翻译