在本文中,我们证明了一种用于优化耦合子模块的最大化问题的制定,具有可提供的次优先界限。在机器人应用中,很常见的是优化问题彼此耦合,因此不能独立解决。具体地,如果第一问题的结果影响第二问题的解决方案,我们考虑两个问题耦合的两个问题,该第二问题在更长的时间尺度上运行。例如,在环境监测的激励问题中,我们对多机器人任务分配有可能影响环境动态,从而影响未来监测的质量,在这里建模为多机器人间歇部署问题。通过该激励例证明了解决这种类型耦合问题的一般理论方法。具体地,我们提出了一种求解由Matroid约束模拟的子模具集功能建模的耦合问题的方法。提出了一种解决这类问题的贪婪算法,以及子最优的保证。最后,通过蒙特卡罗模拟示出了实用的最优比率,以证明所提出的算法可以高效率产生近最佳解决方案。
translated by 谷歌翻译
在本文中,我们制定和解决间歇部署问题,从而产生了夫妇\ emph {当异质机器人应该感知环境过程的策略,其中一支部署的团队应该在环境中感知。作为一种动机,假设不必要的多机器人团队,例如无人驾驶飞行器监测牧场在精确农业背景下监控牧场的慢慢发展。在这种情况下,作为缓慢不断发展的过程,持久部署或监视是必要的间歇部署策略是必要的。与此同时,在部署一旦部署的地方的问题必须解决,因为过程观察产生了确定有效未来部署和监测决策的有用反馈。在这种情况下,我们将环境进程建模为作为一种时空高斯过程,以互信作为衡量我们对环境理解的标准。为了使传感资源有效,我们展示了如何使用Matroid约束来强加多样化的均匀和异构的约束。此外,为了反映现实世界应用的成本敏感性质,我们申请预算为部署的异构机器人团队的成本。为了解决所产生的问题,我们利用子模具优化和麦芽瘤的理论,并提出了一种贪婪算法,借助次级最优性。最后,蒙特卡罗模拟证明了所提出的方法的正确性。
translated by 谷歌翻译
监测草原的健康和活力对于告知管理决策至关优化农业应用中的旋转放牧的态度至关重要。为了利用饲料资源,提高土地生产力,我们需要了解牧场的增长模式,这在最先进的状态下即可。在本文中,我们建议部署一个机器人团队来监测一个未知的牧场环境的演变,以实现上述目标。为了监测这种环境,通常会缓慢发展,我们需要设计一种以低成本在大面积上快速评估环境的策略。因此,我们提出了一种集成管道,包括数据综合,深度神经网络训练和预测以及一个间歇地监测牧场的多机器人部署算法。具体而言,使用与ROS Gazebo的新型数据综合耦合的专家知识的农业数据,我们首先提出了一种新的神经网络架构来学习环境的时空动态。这种预测有助于我们了解大规模上的牧场增长模式,并为未来做出适当的监测决策。基于我们的预测,我们设计了一个用于低成本监控的间歇多机器人部署策略。最后,我们将提议的管道与其他方法进行比较,从数据综合到预测和规划,以证实我们的管道的性能。
translated by 谷歌翻译
多路径定向问题询问机器人团队的路径最大化收集的总奖励,同时满足路径长度上的预算约束。这个问题模拟了许多多机器人路由任务,例如探索未知的环境和环境监控信息。在本文中,我们专注于如何使机器人团队在对抗环境中运行时对故障的强大。我们介绍了强大的多路径定向事问题(RMOP),在那里我们寻求最糟糕的案例保证,反对能够在大多数$ \ Alpha $机器人处攻击的对手。我们考虑两个问题的两个版本:RMOP离线和RMOP在线。在离线版本中,当机器人执行其计划时,没有通信或重新扫描,我们的主要贡献是一种具有界限近似保证的一般近似方案,其取决于$ \ alpha $和单个机器人导向的近似因子。特别是,我们表明该算法在成本函数是模块化时产生(i)恒因子近似; (ii)在成本函数是子模具时,$ \ log $因子近似; (iii)当成本函数是子模块时的恒因子近似,但是允许机器人通过有界金额超过其路径预算。在在线版本中,RMOP被建模为双人顺序游戏,并基于蒙特卡罗树搜索(MCT),以后退地平线方式自适应解决。除了理论分析之外,我们还对海洋监测和隧道信息收集应用进行仿真研究,以证明我们的方法的功效。
translated by 谷歌翻译
我们在不可预测的环境中启用有效和有效的协调,即,在未来进化的环境中是未知的先验甚至对抗性的环境。我们受到自治的未来的激励,涉及多个机器人在动态,非结构化和对抗性环境中协调,以完成复杂的任务,例如目标跟踪,图像覆盖率和区域监视。此类任务通常被建模为子管道最大化协调问题。因此,我们介绍了第一个具有有限跟踪遗憾的第一个子管道协调算法,即,关于最佳的时间变化的行动,次要次数有限,这些行动知道未来是先验的未来。该界限随着环境的对抗性能力而优雅地降级。它还量化了机器人必须重新选择的操作以“学习”以进行协调的频率,就像他们知道未来是先验的。我们的算法概括了Fisher等人的开创性顺序贪婪算法。为了不可预测的环境,利用子模性和算法来跟踪最佳专家的问题。我们在目标跟踪的模拟方案中验证算法。
translated by 谷歌翻译
本文考虑了安全协调一个配备传感器的机器人团队的问题,以减少有关动态过程的不确定性,而该过程将使目标消除信息增益和能源成本。优化这种权衡是可取的,但是在机器人轨迹集中导致非占主酮目标函数。因此,基于协调下降的普通多机器人计划者失去了其性能保证。此外,处理非单调性的方法在受到机器人间碰撞避免约束时会失去其性能保证。由于需要保留性能保证和安全保证,这项工作提出了一种分布式计划者的层次结构方法,该方法使用本地搜索,并根据控制屏障功能提供了基于控制屏障功能的当地搜索和分散的控制器,以确保安全并鼓励及时到达传感位置。通过大量的模拟,硬件测试和硬件实验,我们证明了所提出的方法比基于坐标下降的算法在感应和能源成本之间取得更好的权衡。
translated by 谷歌翻译
本文介绍了适用于各种实用多机器人应用的分布式算法。在这种多机器人应用中,使命的用户定义目标可以作为一般优化问题投射,而无需每个不同机器人的子任务的明确指南。由于环境未知,未知的机器人动态,传感器非线性等,优化成本函数的分析形式不可用。因此,标准梯度 - 下降样算法不适用于这些问题。为了解决这个问题,我们介绍了一种新的算法,仔细设计每个机器人的子变速功能,优化可以实现整个团队目标。在该转换时,我们提出了一种基于基于认知的自适应优化(CAO)算法的分布式方法,其能够近似每个机器人成本函数的演变并充分优化其决策变量(机器人动作)。后者可以通过在线学习来实现影响特派团目标的特定特定特征。总体而言,低复杂性算法可以简单地结合任何类型的操作约束,是容错的,并且可以适当地解决时变的成本函数。这种方法的基石是它与块坐标血管下降算法相同的收敛特征。该算法在多种方案下的三个异构模拟设置中评估,针对通用和特定于问题的算法。源代码可在\ url {https://github.com/athakapo/a-distributed-plug-lobot-applications}中获得。
translated by 谷歌翻译
在本文中,我们研究了众所周知的团队导演问题,其中一批机器人通过访问地点收集奖励。通常,假设奖励是机器人已知的;但是,在环境监测或场景重建的应用中,奖励通常是主观的,并指定它们是具有挑战性的。我们提出了一个框架来通过向它们呈现替代解决方案来学习用户的未知偏好,并且用户在所提出的替代解决方案上提供排名。我们考虑了用户的两种情况:1)确定替代解决方案的最佳排名的确定性用户,以及根据未知概率分布提供最佳排名的噪声用户。对于确定性用户,我们提出了一个框架,以最大限度地减少与最佳解决方案的最大偏差的界限,即后悔。我们适应捕获嘈杂用户的方法,并最大限度地减少预期的遗憾。最后,我们展示了学习用户偏好的重要性以及在广泛的实验结果中使用真实的世界数据集进行环境监测问题的大量实验结果的性能。
translated by 谷歌翻译
在本文中,我们考虑在具有多个半自治机器人的系统中分配人类运营商的问题。每个机器人都需要执行独立的任务序列,经历了一次失败并在每个任务时陷入故障状态的可能性。如果需要,人类运营商可以帮助或漫游机器人。传统的MDP技术用于解决这些问题的面临可扩展性问题,因为具有机器人和运营商的数量的状态和行动空间的指数增长。在本文中,我们推出了操作员分配问题可转向的条件,从而实现了削弱指数启发式的使用。可以容易地检查条件以验证可索引性,我们表明他们持有广泛的兴趣问题。我们的主要洞察力是利用各个机器人的价值函数的结构,从而导致可以针对每个机器人的每个状态分开验证的条件。我们将这些条件应用于远程机器人监控系统中常见的两种转换。通过数值模拟,我们展示了削减指数政策作为近乎最佳和可扩展方法的功效,以实现现有的可扩展方法。
translated by 谷歌翻译
Evolutionary algorithms (EAs) are a kind of nature-inspired general-purpose optimization algorithm, and have shown empirically good performance in solving various real-word optimization problems. During the past two decades, promising results on the running time analysis (one essential theoretical aspect) of EAs have been obtained, while most of them focused on isolated combinatorial optimization problems, which do not reflect the general-purpose nature of EAs. To provide a general theoretical explanation of the behavior of EAs, it is desirable to study their performance on general classes of combinatorial optimization problems. To the best of our knowledge, the only result towards this direction is the provably good approximation guarantees of EAs for the problem class of maximizing monotone submodular functions with matroid constraints. The aim of this work is to contribute to this line of research. Considering that many combinatorial optimization problems involve non-monotone or non-submodular objective functions, we study the general problem classes, maximizing submodular functions with/without a size constraint and maximizing monotone approximately submodular functions with a size constraint. We prove that a simple multi-objective EA called GSEMO-C can generally achieve good approximation guarantees in polynomial expected running time.
translated by 谷歌翻译
我们研究了合作航空航天车辆路线应用程序的资源分配问题,其中多个无人驾驶汽车(UAV)电池容量有限和多个无人接地车辆(UGV),这也可以充当移动充电站,需要共同实现诸如持续监视一组要点之类的任务。由于无人机的电池能力有限,他们有时必须偏离任务才能与UGV进行集合并得到充电。每个UGV一次可以一次提供有限数量的无人机。与确定性多机器人计划的先前工作相反,我们考虑了无人机能源消耗的随机性所带来的挑战。我们有兴趣找到无人机的最佳充电时间表,从而最大程度地减少了旅行成本,并且在计划范围内没有任何无人机在计划范围内取消收费的可能性大于用户定义的公差。我们将此问题({风险意识召集集合问题(RRRP))}作为整数线性程序(ILP),其中匹配的约束捕获资源可用性约束,而背包约束捕获了成功概率约束。我们提出了一种求解RRRP的双晶格近似算法。在一个持续监测任务的背景下,我们证明了我们的制定和算法的有效性。
translated by 谷歌翻译
我们为多机器人任务计划和分配问题提出了一种新的公式,该公式结合了(a)任务之间的优先关系; (b)任务的协调,允许多个机器人提高效率; (c)通过形成机器人联盟的任务合作,而单独的机器人不能执行。在我们的公式中,任务图指定任务和任务之间的关系。我们在任务图的节点和边缘上定义了一组奖励函数。这些功能对机器人联盟规模对任务绩效的影响进行建模,并结合一个任务的性能对依赖任务的影响。最佳解决此问题是NP-HARD。但是,使用任务图公式使我们能够利用最小成本的网络流量方法有效地获得近似解决方案。此外,我们还探索了一种混合整数编程方法,该方法为问题的小实例提供了最佳的解决方案,但计算上很昂贵。我们还开发了一种贪婪的启发式算法作为基准。我们的建模和解决方案方法导致任务计划,即使在与许多代理商的大型任务中,也利用任务优先关系的关系以及机器人的协调和合作来实现高级任务绩效。
translated by 谷歌翻译
在本文中,我们考虑了在具有多个自动机器人的系统中分配人类操作员协助的问题。每个机器人都需要完成独立任务,每个任务定义为一系列任务。在执行任务时,机器人可以自主操作,也可以由人类操作员远程执行,以更快地完成任务。我们表明,创建详细时间表的问题使系统的制造量最小化是NP-HARD。我们将问题提出为混合整数线性程序,可用于最佳地解决小到中等大小的问题实例。我们还开发了一种随时随地的算法,该算法利用问题结构来提供对操作员调度问题的快速和高质量解决方案,即使对于更大的问题实例也是如此。我们的关键见解是在贪婪创建的时间表中识别阻止任务,并迭代地删除这些块以提高解决方案的质量。通过数值模拟,我们证明了所提出的算法的好处是一种高于其他贪婪方法的有效且可扩展的方法。
translated by 谷歌翻译
In many domains such as transportation and logistics, search and rescue, or cooperative surveillance, tasks are pending to be allocated with the consideration of possible execution uncertainties. Existing task coordination algorithms either ignore the stochastic process or suffer from the computational intensity. Taking advantage of the weakly coupled feature of the problem and the opportunity for coordination in advance, we propose a decentralized auction-based coordination strategy using a newly formulated score function which is generated by forming the problem into task-constrained Markov decision processes (MDPs). The proposed method guarantees convergence and at least 50% optimality in the premise of a submodular reward function. Furthermore, for the implementation on large-scale applications, an approximate variant of the proposed method, namely Deep Auction, is also suggested with the use of neural networks, which is evasive of the troublesome for constructing MDPs. Inspired by the well-known actor-critic architecture, two Transformers are used to map observations to action probabilities and cumulative rewards respectively. Finally, we demonstrate the performance of the two proposed approaches in the context of drone deliveries, where the stochastic planning for the drone league is cast into a stochastic price-collecting Vehicle Routing Problem (VRP) with time windows. Simulation results are compared with state-of-the-art methods in terms of solution quality, planning efficiency and scalability.
translated by 谷歌翻译
本文解决了积极计划的问题,以在GNSS受限的场景中测量不确定性下实现多机器人系统(MRS)的合作定位。具体而言,我们解决了准确预测配备基于范围的测量设备的两个机器人之间未来连接的概率的问题。由于配备的传感器范围有限,由于机器人相互移动,网络连接拓扑中的边缘将被创建或破坏。因此,鉴于状态估计不完善和嘈杂的驱动,准确地预测边缘的未来存在是一项具有挑战性的任务。自适应功率序列扩展(或APSE)算法是根据当前估计和控制候选者开发的。这种算法在正态分布中应用了二次阳性形式的功率序列扩展公式。有限端近似是为了实现计算障碍。提出了进一步的分析,以表明通过自适应选择功率序列的求和度,可以从理论上将有限端近似中的截断误差降低到所需的阈值。几种足够的条件被严格得出作为选择原则。最后,相对于单个和多机器人案例,广泛的仿真结果和比较验证了正式计算的,因此将来拓扑的更准确的概率可以帮助改善在不确定性下积极计划的性能。
translated by 谷歌翻译
In model selection problems for machine learning, the desire for a well-performing model with meaningful structure is typically expressed through a regularized optimization problem. In many scenarios, however, the meaningful structure is specified in some discrete space, leading to difficult nonconvex optimization problems. In this paper, we connect the model selection problem with structure-promoting regularizers to submodular function minimization with continuous and discrete arguments. In particular, we leverage the theory of submodular functions to identify a class of these problems that can be solved exactly and efficiently with an agnostic combination of discrete and continuous optimization routines. We show how simple continuous or discrete constraints can also be handled for certain problem classes and extend these ideas to a robust optimization framework. We also show how some problems outside of this class can be embedded within the class, further extending the class of problems our framework can accommodate. Finally, we numerically validate our theoretical results with several proof-of-concept examples with synthetic and real-world data, comparing against state-of-the-art algorithms.
translated by 谷歌翻译
信号处理和机器学习中的许多问题都可以正面被形式化为弱子模块优化任务。对于此类问题,保证了一种简单的贪婪算法(\ textsc {greedy}),以找到实现目标的解决方案,其中值不到1-e ^ { - 1 / c} $的最佳值,其中$ c $乘法弱潜水解度常数。由于查询大规模系统的高成本,在当代应用中,\ Textsc {贪婪}的复杂性变得令人望而却步。在这项工作中,我们研究了随机采样策略的绩效和复杂性之间的权衡,以减少\ textsc的查询复杂性{greedy}。具体而言,我们通过两个度量来量化统一采样策略对\ textsc {贪婪}的性能的影响:(i)识别最佳子集的概率,(ii)相对于最佳解决方案的次优。后者意味着具有固定采样尺寸的均匀采样策略实现了非平凡的近似因子;但是,我们表明,通过压倒性概率,这些方法无法找到最佳子集。我们的分析表明,通过连续增加搜索空间的大小,可以避免具有固定样本大小的均匀采样策略的失败。建立这种洞察力,我们提出了一种简单的渐进式随机贪婪算法,并研究其近似保证。此外,我们展示了提出的方法在维度减少应用中的提出方法以及用于聚类和对象跟踪的特征选择任务。
translated by 谷歌翻译
In this paper, we study the \underline{R}obust \underline{o}ptimization for \underline{se}quence \underline{Net}worked \underline{s}ubmodular maximization (RoseNets) problem. We interweave the robust optimization with the sequence networked submodular maximization. The elements are connected by a directed acyclic graph and the objective function is not submodular on the elements but on the edges in the graph. Under such networked submodular scenario, the impact of removing an element from a sequence depends both on its position in the sequence and in the network. This makes the existing robust algorithms inapplicable. In this paper, we take the first step to study the RoseNets problem. We design a robust greedy algorithm, which is robust against the removal of an arbitrary subset of the selected elements. The approximation ratio of the algorithm depends both on the number of the removed elements and the network topology. We further conduct experiments on real applications of recommendation and link prediction. The experimental results demonstrate the effectiveness of the proposed algorithm.
translated by 谷歌翻译
主动位置估计(APE)是使用一个或多个传感平台本地化一个或多个目标的任务。 APE是搜索和拯救任务,野生动物监测,源期限估计和协作移动机器人的关键任务。 APE的成功取决于传感平台的合作水平,他们的数量,他们的自由度和收集的信息的质量。 APE控制法通过满足纯粹剥削或纯粹探索性标准,可以实现主动感测。前者最大限度地减少了位置估计的不确定性;虽然后者驱动了更接近其任务完成的平台。在本文中,我们定义了系统地分类的主要元素,并批判地讨论该域中的最新状态。我们还提出了一个参考框架作为对截图相关的解决方案的形式主义。总体而言,本调查探讨了主要挑战,并设想了本地化任务的自主感知系统领域的主要研究方向。促进用于搜索和跟踪应用的强大主动感测方法的开发也有益。
translated by 谷歌翻译
通过新兴应用程序,如现场媒体电子商务,促销和建议,我们介绍和解决了一般的非静止多武装强盗问题,具有以下两个特征:(i)决策者可以拉动和收集每次期间,从最多$ k \,(\ ge 1)美元的奖励; (ii)手臂拉动后的预期奖励立即下降,然后随着ARM空闲时间的增加,非参数恢复。目的是最大化预期累计奖励超过$ T $时间段,我们设计了一类“纯粹的周期性政策”,共同设置了拉动每个臂的时间。对于拟议的政策,我们证明了离线问题和在线问题的性能保证。对于脱机问题,当已知所有型号参数时,所提出的周期性策略获得1- \ Mathcal O(1 / \ Sqrt {k})$的近似率,当$ k $生长时是渐近的最佳状态到无穷远。对于在线问题时,当模型参数未知并且需要动态学习时,我们将脱机周期性策略与在线策略上的上部置信程序进行集成。拟议的在线策略被证明是对脱机基准的近似拥有$ \ widetilde {\ mathcal o}(n \ sqrt {t})。我们的框架和政策设计可能在更广泛的离线规划和在线学习应用程序中阐明,具有非静止和恢复奖励。
translated by 谷歌翻译