在本文中,我们制定和解决间歇部署问题,从而产生了夫妇\ emph {当异质机器人应该感知环境过程的策略,其中一支部署的团队应该在环境中感知。作为一种动机,假设不必要的多机器人团队,例如无人驾驶飞行器监测牧场在精确农业背景下监控牧场的慢慢发展。在这种情况下,作为缓慢不断发展的过程,持久部署或监视是必要的间歇部署策略是必要的。与此同时,在部署一旦部署的地方的问题必须解决,因为过程观察产生了确定有效未来部署和监测决策的有用反馈。在这种情况下,我们将环境进程建模为作为一种时空高斯过程,以互信作为衡量我们对环境理解的标准。为了使传感资源有效,我们展示了如何使用Matroid约束来强加多样化的均匀和异构的约束。此外,为了反映现实世界应用的成本敏感性质,我们申请预算为部署的异构机器人团队的成本。为了解决所产生的问题,我们利用子模具优化和麦芽瘤的理论,并提出了一种贪婪算法,借助次级最优性。最后,蒙特卡罗模拟证明了所提出的方法的正确性。
translated by 谷歌翻译
在本文中,我们证明了一种用于优化耦合子模块的最大化问题的制定,具有可提供的次优先界限。在机器人应用中,很常见的是优化问题彼此耦合,因此不能独立解决。具体地,如果第一问题的结果影响第二问题的解决方案,我们考虑两个问题耦合的两个问题,该第二问题在更长的时间尺度上运行。例如,在环境监测的激励问题中,我们对多机器人任务分配有可能影响环境动态,从而影响未来监测的质量,在这里建模为多机器人间歇部署问题。通过该激励例证明了解决这种类型耦合问题的一般理论方法。具体地,我们提出了一种求解由Matroid约束模拟的子模具集功能建模的耦合问题的方法。提出了一种解决这类问题的贪婪算法,以及子最优的保证。最后,通过蒙特卡罗模拟示出了实用的最优比率,以证明所提出的算法可以高效率产生近最佳解决方案。
translated by 谷歌翻译
监测草原的健康和活力对于告知管理决策至关优化农业应用中的旋转放牧的态度至关重要。为了利用饲料资源,提高土地生产力,我们需要了解牧场的增长模式,这在最先进的状态下即可。在本文中,我们建议部署一个机器人团队来监测一个未知的牧场环境的演变,以实现上述目标。为了监测这种环境,通常会缓慢发展,我们需要设计一种以低成本在大面积上快速评估环境的策略。因此,我们提出了一种集成管道,包括数据综合,深度神经网络训练和预测以及一个间歇地监测牧场的多机器人部署算法。具体而言,使用与ROS Gazebo的新型数据综合耦合的专家知识的农业数据,我们首先提出了一种新的神经网络架构来学习环境的时空动态。这种预测有助于我们了解大规模上的牧场增长模式,并为未来做出适当的监测决策。基于我们的预测,我们设计了一个用于低成本监控的间歇多机器人部署策略。最后,我们将提议的管道与其他方法进行比较,从数据综合到预测和规划,以证实我们的管道的性能。
translated by 谷歌翻译
本文考虑了安全协调一个配备传感器的机器人团队的问题,以减少有关动态过程的不确定性,而该过程将使目标消除信息增益和能源成本。优化这种权衡是可取的,但是在机器人轨迹集中导致非占主酮目标函数。因此,基于协调下降的普通多机器人计划者失去了其性能保证。此外,处理非单调性的方法在受到机器人间碰撞避免约束时会失去其性能保证。由于需要保留性能保证和安全保证,这项工作提出了一种分布式计划者的层次结构方法,该方法使用本地搜索,并根据控制屏障功能提供了基于控制屏障功能的当地搜索和分散的控制器,以确保安全并鼓励及时到达传感位置。通过大量的模拟,硬件测试和硬件实验,我们证明了所提出的方法比基于坐标下降的算法在感应和能源成本之间取得更好的权衡。
translated by 谷歌翻译
在本文中,我们在不确定的沟通和对抗性攻击者的影响下解决了多机器人信息路径计划(MIPP)任务。目的是创建一个多机器人系统,尽管存在损坏的机器人共享恶意信息,但仍可以学习并统一对未知环境的知识。我们使用高斯工艺(GP)来对未知环境进行建模,并使用相互信息的指标来定义信息。我们MIPP任务的目标是最大化团队收集的信息量,同时最大程度地提高弹性弹性的可能性。不幸的是,这些目标是矛盾的,尤其是在探索需要机器人之间断开连接的大环境时。结果,我们强加了一个概率的通信约束,该概率可以使机器人间歇性地满足和弹性地共享信息,然后在所有其他时间内采取行动以最大程度地提高收集的信息。为了解决我们的问题,我们选择具有最高弹性概率的会议位置,并使用顺序贪婪算法来优化机器人探索的路径。最后,我们通过比较应用弹性和非弹性MIPP算法的良好行为机器人的学习能力来展示结果的有效性。
translated by 谷歌翻译
在本文中,我们为具有异质传感器的机器人团队提供了在线自适应计划策略,以使用学习的模型进行决策模型从潜在空间领域进行采样。当前的机器人抽样方法试图收集有关可观察到的空间场的信息。但是,许多应用程序,例如环境监测和精确农业,都涉及不直接观察或衡量昂贵的现象,称为潜在现象。在我们的方法中,我们试图通过使用具有异质传感器的机器人团队有效地采样可观察到的空间场来实时推理潜在现象,在这种空间场中,每个机器人都有一个独特的传感器来测量不同可观察的场。信息增益是使用从可观察到的空间场映射到潜在现象的学习模型来估计的。该模型捕获了关系中的不确定性,以允许信息理论措施。此外,我们明确考虑可观察到的空间场之间的相关性,从而捕获了观察结果并非独立的传感器类型之间的关系。我们表明,可以学习这些相关性,并研究学习相关模型对我们采样方法性能的影响。通过我们的定性和定量结果,我们说明了经验学习的相关性提高了团队的整体抽样效率。我们使用在魁北克的Lac Hertel上收集的传感器测量数据集模拟我们的方法,我们可以公开使用。
translated by 谷歌翻译
主动位置估计(APE)是使用一个或多个传感平台本地化一个或多个目标的任务。 APE是搜索和拯救任务,野生动物监测,源期限估计和协作移动机器人的关键任务。 APE的成功取决于传感平台的合作水平,他们的数量,他们的自由度和收集的信息的质量。 APE控制法通过满足纯粹剥削或纯粹探索性标准,可以实现主动感测。前者最大限度地减少了位置估计的不确定性;虽然后者驱动了更接近其任务完成的平台。在本文中,我们定义了系统地分类的主要元素,并批判地讨论该域中的最新状态。我们还提出了一个参考框架作为对截图相关的解决方案的形式主义。总体而言,本调查探讨了主要挑战,并设想了本地化任务的自主感知系统领域的主要研究方向。促进用于搜索和跟踪应用的强大主动感测方法的开发也有益。
translated by 谷歌翻译
多路径定向问题询问机器人团队的路径最大化收集的总奖励,同时满足路径长度上的预算约束。这个问题模拟了许多多机器人路由任务,例如探索未知的环境和环境监控信息。在本文中,我们专注于如何使机器人团队在对抗环境中运行时对故障的强大。我们介绍了强大的多路径定向事问题(RMOP),在那里我们寻求最糟糕的案例保证,反对能够在大多数$ \ Alpha $机器人处攻击的对手。我们考虑两个问题的两个版本:RMOP离线和RMOP在线。在离线版本中,当机器人执行其计划时,没有通信或重新扫描,我们的主要贡献是一种具有界限近似保证的一般近似方案,其取决于$ \ alpha $和单个机器人导向的近似因子。特别是,我们表明该算法在成本函数是模块化时产生(i)恒因子近似; (ii)在成本函数是子模具时,$ \ log $因子近似; (iii)当成本函数是子模块时的恒因子近似,但是允许机器人通过有界金额超过其路径预算。在在线版本中,RMOP被建模为双人顺序游戏,并基于蒙特卡罗树搜索(MCT),以后退地平线方式自适应解决。除了理论分析之外,我们还对海洋监测和隧道信息收集应用进行仿真研究,以证明我们的方法的功效。
translated by 谷歌翻译
本文介绍了适用于各种实用多机器人应用的分布式算法。在这种多机器人应用中,使命的用户定义目标可以作为一般优化问题投射,而无需每个不同机器人的子任务的明确指南。由于环境未知,未知的机器人动态,传感器非线性等,优化成本函数的分析形式不可用。因此,标准梯度 - 下降样算法不适用于这些问题。为了解决这个问题,我们介绍了一种新的算法,仔细设计每个机器人的子变速功能,优化可以实现整个团队目标。在该转换时,我们提出了一种基于基于认知的自适应优化(CAO)算法的分布式方法,其能够近似每个机器人成本函数的演变并充分优化其决策变量(机器人动作)。后者可以通过在线学习来实现影响特派团目标的特定特定特征。总体而言,低复杂性算法可以简单地结合任何类型的操作约束,是容错的,并且可以适当地解决时变的成本函数。这种方法的基石是它与块坐标血管下降算法相同的收敛特征。该算法在多种方案下的三个异构模拟设置中评估,针对通用和特定于问题的算法。源代码可在\ url {https://github.com/athakapo/a-distributed-plug-lobot-applications}中获得。
translated by 谷歌翻译
信息性规划试图指导机器人的一系列动作,以收集最大信息的数据以映射大环境或学习动态系统。信息规划中的现有工作主要侧重于提出新规划者,并将其应用于各种机器人应用,如环境监测,自主勘探和系统识别。信息规划人员优化了概率模型给出的目标,例如,高斯过程回归。在实践中,该模型可以很容易受到无处不在的传感异常值的影响,导致误导目标。直接的解决方案是使用搁板的异常值检测器过滤出传感数据流中的异常值。但是,信息性样本也根据定义稀缺,因此它们可能被错误地筛选出来。在本文中,我们提出了一种方法来使机器人能够重新访问除了优化信息规划目标之外对异常值进行采样的位置。通过这样做,机器人可以在异常值附近收集更多样本,并更新异常值检测器以减少误报的数量。这是通过在蒙特卡罗树搜索的帕累托变体上设计一个新目标来实现的。我们证明所提出的框架可以实现比仅应用异常值探测器更好的性能。
translated by 谷歌翻译
在本文中,我们研究了众所周知的团队导演问题,其中一批机器人通过访问地点收集奖励。通常,假设奖励是机器人已知的;但是,在环境监测或场景重建的应用中,奖励通常是主观的,并指定它们是具有挑战性的。我们提出了一个框架来通过向它们呈现替代解决方案来学习用户的未知偏好,并且用户在所提出的替代解决方案上提供排名。我们考虑了用户的两种情况:1)确定替代解决方案的最佳排名的确定性用户,以及根据未知概率分布提供最佳排名的噪声用户。对于确定性用户,我们提出了一个框架,以最大限度地减少与最佳解决方案的最大偏差的界限,即后悔。我们适应捕获嘈杂用户的方法,并最大限度地减少预期的遗憾。最后,我们展示了学习用户偏好的重要性以及在广泛的实验结果中使用真实的世界数据集进行环境监测问题的大量实验结果的性能。
translated by 谷歌翻译
考虑了建立UNKONWN地面真相函数值的样本外界限的问题。内核及其相关的希尔伯特空间是本文所采用的主要形式主义,以及一个观察模型,在该模型中,输出被有限的测量噪声损坏。噪声可以源于任何紧凑的分布,并且没有对可用数据进行独立假设。在这种情况下,我们显示计算紧密的,有限样本的不确定性范围等于求解参数四次约束线性程序。接下来,建立了我们方法的属性,并研究了其与另一种方法的关系。提出了数值实验,以说明如何在许多情况下应用理论,并将其与其他封闭形式的替代方案进行对比。
translated by 谷歌翻译
具有多模式传感(AIPPMS)的自适应信息路径计划(AIPPMS)考虑了配备多个传感器的代理商的问题,每个传感器具有不同的感应精度和能量成本。代理商的目标是探索环境并在未知的,部分可观察到的环境中受到其资源约束的信息。先前的工作集中在不太一般的适应性信息路径计划(AIPP)问题上,该问题仅考虑了代理人运动对收到的观察结果的影响。 AIPPMS问题通过要求代理的原因共同出现感应和移动的影响,同时平衡资源约束与信息目标,从而增加了额外的复杂性。我们将AIPPMS问题作为一种信念马尔可夫决策过程,并具有高斯流程信念,并使用在线计划中使用顺序的贝叶斯优化方法来解决它。我们的方法始终优于以前的AIPPMS解决方案,这几乎将几乎每个实验中获得的平均奖励增加了一倍,同时还将根平方的错误在环境信念中减少了50%。我们完全开放我们的实施方式,以帮助进一步开发和比较。
translated by 谷歌翻译
在许多环境监测方案中,采样机器人需要同时探索环境和利用有限时间利用感兴趣的特征。我们介绍了一个名为Pareto Monte Carlo树搜索的多目标信息规划方法,该方法允许机器人处理潜在的竞争目标,例如勘探与剥削。该方法基于环境状态的知识(估计)为机器人产生了优化的决策解决方案,从而更好地适应环境动态。我们在关键树节点选择步骤提供算法分析,并显示选择子最优节点的次数是对数界限的,并且搜索结果以多项式率收敛到最佳选择。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
本文解决了积极计划的问题,以在GNSS受限的场景中测量不确定性下实现多机器人系统(MRS)的合作定位。具体而言,我们解决了准确预测配备基于范围的测量设备的两个机器人之间未来连接的概率的问题。由于配备的传感器范围有限,由于机器人相互移动,网络连接拓扑中的边缘将被创建或破坏。因此,鉴于状态估计不完善和嘈杂的驱动,准确地预测边缘的未来存在是一项具有挑战性的任务。自适应功率序列扩展(或APSE)算法是根据当前估计和控制候选者开发的。这种算法在正态分布中应用了二次阳性形式的功率序列扩展公式。有限端近似是为了实现计算障碍。提出了进一步的分析,以表明通过自适应选择功率序列的求和度,可以从理论上将有限端近似中的截断误差降低到所需的阈值。几种足够的条件被严格得出作为选择原则。最后,相对于单个和多机器人案例,广泛的仿真结果和比较验证了正式计算的,因此将来拓扑的更准确的概率可以帮助改善在不确定性下积极计划的性能。
translated by 谷歌翻译
信息性测量是获取有关未知状态信息的最有效方法。我们给出了一般目的动态编程算法的第一原理推导,通过顺序地最大化可能的测量结果的熵来返回一系列信息测量。该算法可以由自主代理或机器人使用,以确定最佳测量的位置,规划对应于信息序列的最佳信息序列的路径。该算法适用于具有连续或离散的状态和控制,以及随机或确定性的代理动态;包括马尔可夫决策过程。最近的近似动态规划和强化学习的结果,包括卷展栏和蒙特卡罗树搜索等在线近似,允许代理或机器人实时解决测量任务。由此产生的近最佳溶液包括非近视路径和测量序列,其通常可以优于超过,有时基本上使用的贪婪启发式,例如最大化每个测量结果的熵。这是针对全球搜索问题的说明,其中发现使用扩展本地搜索的在线规划来减少搜索中的测量数。
translated by 谷歌翻译
本文为多代理系统开发了一个随机编程框架,在该系统中,任务分解,分配和调度问题同时被优化。该框架可以应用于具有分布式子任务的异质移动机器人团队。例子包括大流行机器人服务协调,探索和救援以及具有异质车辆的交付系统。由于其固有的灵活性和鲁棒性,多代理系统被应用于越来越多的现实问题,涉及异质任务和不确定信息。大多数以前的作品都采用一种将任务分解为角色的独特方法,以后可以将任务分配给代理。对于角色可以变化并且存在多个分解结构的复杂任务,此假设无效。同时,尚不清楚如何在多代理系统设置下系统地量化和优化任务要求和代理能力中的不确定性。提出了复杂任务的表示形式:代理功能表示为随机分布的向量,任务要求通过可推广的二进制函数验证。在目标函数中选择有风险的条件值(CVAR)作为制定强大计划的度量。描述了一种有效的算法来解决该模型,并在两个不同的实践案例中评估了整个框架:在大流行期间的捕获量和机器人服务协调(例如,Covid-19)。结果表明,该框架是可扩展的,可扩展到示例案例的140个代理和40个任务,并提供了低成本计划,以确保成功的概率很高。
translated by 谷歌翻译
我们在不可预测的环境中启用有效和有效的协调,即,在未来进化的环境中是未知的先验甚至对抗性的环境。我们受到自治的未来的激励,涉及多个机器人在动态,非结构化和对抗性环境中协调,以完成复杂的任务,例如目标跟踪,图像覆盖率和区域监视。此类任务通常被建模为子管道最大化协调问题。因此,我们介绍了第一个具有有限跟踪遗憾的第一个子管道协调算法,即,关于最佳的时间变化的行动,次要次数有限,这些行动知道未来是先验的未来。该界限随着环境的对抗性能力而优雅地降级。它还量化了机器人必须重新选择的操作以“学习”以进行协调的频率,就像他们知道未来是先验的。我们的算法概括了Fisher等人的开创性顺序贪婪算法。为了不可预测的环境,利用子模性和算法来跟踪最佳专家的问题。我们在目标跟踪的模拟方案中验证算法。
translated by 谷歌翻译
主动同时定位和映射(SLAM)是规划和控制机器人运动以构建周围环境中最准确,最完整的模型的问题。自从三十多年前出现了积极感知的第一项基础工作以来,该领域在不同科学社区中受到了越来越多的关注。这带来了许多不同的方法和表述,并回顾了当前趋势,对于新的和经验丰富的研究人员来说都是非常有价值的。在这项工作中,我们在主动大满贯中调查了最先进的工作,并深入研究了仍然需要注意的公开挑战以满足现代应用程序的需求。为了实现现实世界的部署。在提供了历史观点之后,我们提出了一个统一的问题制定并审查经典解决方案方案,该方案将问题分解为三个阶段,以识别,选择和执行潜在的导航措施。然后,我们分析替代方法,包括基于深入强化学习的信念空间规划和现代技术,以及审查有关多机器人协调的相关工作。该手稿以讨论新的研究方向的讨论,解决可再现的研究,主动的空间感知和实际应用,以及其他主题。
translated by 谷歌翻译