由于新的数据智能技术,仓库管理系统一直在不断发展和改进。但是,许多当前的优化已应用于特定情况,或者非常需要手动相互作用。这是强化学习技术发挥作用的地方,提供自动化和适应当前优化政策的能力。在本文中,我们介绍了一个可自定义的环境,它概括了用于强化学习的仓库模拟的定义。我们还验证了这种环境,以防止最新的增强学习算法,并将这些结果与人类和随机政策进行比较。
translated by 谷歌翻译
软件测试活动旨在找到软件产品的可能缺陷,并确保该产品满足其预期要求。一些软件测试接近的方法缺乏自动化或部分自动化,这增加了测试时间和整体软件测试成本。最近,增强学习(RL)已成功地用于复杂的测试任务中,例如游戏测试,回归测试和测试案例优先级,以自动化该过程并提供持续的适应。从业者可以通过从头开始实现RL算法或使用RL框架来使用RL。开发人员已广泛使用这些框架来解决包括软件测试在内的各个领域中的问题。但是,据我们所知,尚无研究从经验上评估RL框架中实用算法的有效性和性能。在本文中,我们凭经验研究了精心选择的RL算法在两个重要的软件测试任务上的应用:在连续集成(CI)和游戏测试的上下文中测试案例的优先级。对于游戏测试任务,我们在简单游戏上进行实验,并使用RL算法探索游戏以检测错误。结果表明,一些选定的RL框架,例如Tensorforce优于文献的最新方法。为了确定测试用例的优先级,我们在CI环境上运行实验,其中使用来自不同框架的RL算法来对测试用例进行排名。我们的结果表明,在某些情况下,预实算算法之间的性能差异很大,激励了进一步的研究。此外,建议对希望选择RL框架的研究人员进行一些基准问题的经验评估,以确保RL算法按预期执行。
translated by 谷歌翻译
我们解决了多梯队供应链中生产规划和分布的问题。我们考虑不确定的需求和铅,这使得问题随机和非线性。提出了马尔可夫决策过程配方和非线性编程模型。作为一个顺序决策问题,深度加强学习(RL)是一种可能的解决方案方法。近年来,这种类型的技术从人工智能和优化社区获得了很多关注。考虑到不同领域的深入RL接近获得的良好结果,对在运营研究领域的问题中造成越来越兴趣的兴趣。我们使用了深入的RL技术,即近端政策优化(PPO2),解决了考虑不确定,定期和季节性需求和常数或随机交货时间的问题。实验在不同的场景中进行,以更好地评估算法的适用性。基于线性化模型的代理用作基线。实验结果表明,PPO2是这种类型的问题的竞争力和适当的工具。 PPO2代理在所有情景中的基线都优于基线,随机交货时间(7.3-11.2%),无论需求是否是季节性的。在具有恒定交货时间的情况下,当不确定的需求是非季节性的时,PPO2代理更好(2.2-4.7%)。结果表明,这种情况的不确定性越大,这种方法的可行性就越大。
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
本文利用了强化学习和深度学习的最新发展来解决供应链库存管理(SCIM)问题,这是一个复杂的顺序决策问题,包括确定在给定时间范围内生产和运送到不同仓库的最佳产品数量。给出了随机两回波供应链环境的数学公式,该公式可以管理任意数量的仓库和产品类型。此外,开发了一个与深钢筋学习(DRL)算法接口的开源库,并公开可用于解决遇险问题。通过在合成生成的数据上进行了丰富的数值实验,比较了最新的DRL算法实现的性能。实验计划的设计和执行,包括供应链的不同结构,拓扑,需求,能力和成本。结果表明,PPO算法非常适合环境的不同特征。 VPG算法几乎总是会收敛到局部最大值,即使它通常达到可接受的性能水平。最后,A3C是最快的算法,但是就像VPG一样,与PPO相比,它从未取得最好的性能。总之,数值实验表明,DRL的性能始终如一,比标准的重新订购策略(例如静态(S,Q) - policy)更好。因此,它可以被认为是解决随机两回波问题的现实世界实例的实用和有效选择。
translated by 谷歌翻译
机器学习算法中多个超参数的最佳设置是发出大多数可用数据的关键。为此目的,已经提出了几种方法,例如进化策略,随机搜索,贝叶斯优化和启发式拇指规则。在钢筋学习(RL)中,学习代理在与其环境交互时收集的数据的信息内容严重依赖于许多超参数的设置。因此,RL算法的用户必须依赖于基于搜索的优化方法,例如网格搜索或Nelder-Mead单简单算法,这对于大多数R1任务来说是非常效率的,显着减慢学习曲线和离开用户的速度有目的地偏见数据收集的负担。在这项工作中,为了使RL算法更加用户独立,提出了一种使用贝叶斯优化的自主超参数设置的新方法。来自过去剧集和不同的超参数值的数据通过执行行为克隆在元学习水平上使用,这有助于提高最大化获取功能的加强学习变体的有效性。此外,通过紧密地整合在加强学习代理设计中的贝叶斯优化,还减少了收敛到给定任务的最佳策略所需的状态转换的数量。与其他手动调整和基于优化的方法相比,计算实验显示了有希望的结果,这突出了改变算法超级参数来增加所生成数据的信息内容的好处。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
强化学习和最近的深度增强学习是解决如Markov决策过程建模的顺序决策问题的流行方法。问题和选择算法和超参数的RL建模需要仔细考虑,因为不同的配置可能需要完全不同的性能。这些考虑因素主要是RL专家的任务;然而,RL在研究人员和系统设计师不是RL专家的其他领域中逐渐变得流行。此外,许多建模决策,例如定义状态和动作空间,批次的大小和批量更新的频率以及时间戳的数量通常是手动进行的。由于这些原因,RL框架的自动化不同组成部分具有重要意义,近年来它引起了很多关注。自动RL提供了一个框架,其中RL的不同组件包括MDP建模,算法选择和超参数优化是自动建模和定义的。在本文中,我们探讨了可以在自动化RL中使用的文献和目前的工作。此外,我们讨论了Autorl中的挑战,打开问题和研究方向。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
A long-standing challenge in artificial intelligence is lifelong learning. In lifelong learning, many tasks are presented in sequence and learners must efficiently transfer knowledge between tasks while avoiding catastrophic forgetting over long lifetimes. On these problems, policy reuse and other multi-policy reinforcement learning techniques can learn many tasks. However, they can generate many temporary or permanent policies, resulting in memory issues. Consequently, there is a need for lifetime-scalable methods that continually refine a policy library of a pre-defined size. This paper presents a first approach to lifetime-scalable policy reuse. To pre-select the number of policies, a notion of task capacity, the maximal number of tasks that a policy can accurately solve, is proposed. To evaluate lifetime policy reuse using this method, two state-of-the-art single-actor base-learners are compared: 1) a value-based reinforcement learner, Deep Q-Network (DQN) or Deep Recurrent Q-Network (DRQN); and 2) an actor-critic reinforcement learner, Proximal Policy Optimisation (PPO) with or without Long Short-Term Memory layer. By selecting the number of policies based on task capacity, D(R)QN achieves near-optimal performance with 6 policies in a 27-task MDP domain and 9 policies in an 18-task POMDP domain; with fewer policies, catastrophic forgetting and negative transfer are observed. Due to slow, monotonic improvement, PPO requires fewer policies, 1 policy for the 27-task domain and 4 policies for the 18-task domain, but it learns the tasks with lower accuracy than D(R)QN. These findings validate lifetime-scalable policy reuse and suggest using D(R)QN for larger and PPO for smaller library sizes.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
The high emission and low energy efficiency caused by internal combustion engines (ICE) have become unacceptable under environmental regulations and the energy crisis. As a promising alternative solution, multi-power source electric vehicles (MPS-EVs) introduce different clean energy systems to improve powertrain efficiency. The energy management strategy (EMS) is a critical technology for MPS-EVs to maximize efficiency, fuel economy, and range. Reinforcement learning (RL) has become an effective methodology for the development of EMS. RL has received continuous attention and research, but there is still a lack of systematic analysis of the design elements of RL-based EMS. To this end, this paper presents an in-depth analysis of the current research on RL-based EMS (RL-EMS) and summarizes the design elements of RL-based EMS. This paper first summarizes the previous applications of RL in EMS from five aspects: algorithm, perception scheme, decision scheme, reward function, and innovative training method. The contribution of advanced algorithms to the training effect is shown, the perception and control schemes in the literature are analyzed in detail, different reward function settings are classified, and innovative training methods with their roles are elaborated. Finally, by comparing the development routes of RL and RL-EMS, this paper identifies the gap between advanced RL solutions and existing RL-EMS. Finally, this paper suggests potential development directions for implementing advanced artificial intelligence (AI) solutions in EMS.
translated by 谷歌翻译
In this paper, we consider the problem of path finding for a set of homogeneous and autonomous agents navigating a previously unknown stochastic environment. In our problem setting, each agent attempts to maximize a given utility function while respecting safety properties. Our solution is based on ideas from evolutionary game theory, namely replicating policies that perform well and diminishing ones that do not. We do a comprehensive comparison with related multiagent planning methods, and show that our technique beats state of the art RL algorithms in minimizing path length by nearly 30% in large spaces. We show that our algorithm is computationally faster than deep RL methods by at least an order of magnitude. We also show that it scales better with an increase in the number of agents as compared to other methods, path planning methods in particular. Lastly, we empirically prove that the policies that we learn are evolutionarily stable and thus impervious to invasion by any other policy.
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
在空间显式的基于个别模型中捕获和模拟智能自适应行为仍然是研究人员持续的挑战。虽然收集了不断增长的现实行为数据,但存在很少的方法,可以量化和正式化关键的个人行为以及它们如何改变空间和时间。因此,通常使用的常用代理决策框架(例如事件条件 - 行动规则)通常只需要仅关注狭窄的行为范围。我们认为,这些行为框架通常不会反映现实世界的情景,并且未能捕捉如何以响应刺激而发展行为。对机器学习方法的兴趣增加了近年来模拟智能自适应行为的兴趣。在该区域中开始获得牵引的一种方法是增强学习(RL)。本文探讨了如何使用基于简单的捕食者 - 猎物代理的模型(ABM)来应用RL创建紧急代理行为。运行一系列模拟,我们证明了使用新型近端政策优化(PPO)算法培训的代理以展示现实世界智能自适应行为的性质,例如隐藏,逃避和觅食。
translated by 谷歌翻译
道路维护规划是道路资产管理的一个组成部分。维护和康复(M&R)实践中的主要挑战之一是确定维护类型和时间。本研究提出了一种基于长期路面性能(LTPP)数据库的强化学习(RL)的框架,以确定M&R实践的类型和时间。首先以所提出的算法开发预测DNN模型,其用作RL算法的环境。对于RL模型的策略估计,开发了DQN和PPO模型。然而,由于更好的收敛性和更高的样本效率,终点被选中了PPO。本研究中使用的指标是国际粗糙度指数(IRI)和车辙深度(RD)。最初,我们将裂化度量(cm)视为第三指示器,但是由于与其他指标相比的数据少得多,因此被排除在外,导致结果的准确性较低。此外,在成本效益计算(奖励)中,我们考虑了M&R治疗的经济和环境影响。使用Palate 2.0软件评估了成本和环境影响。我们的方法是在德克萨斯州德克萨斯州的23公里长的六车道高速公路的假设案例研究中进行了测试。结果提出了一个20年的M&R计划,其中道路状况保持在出色的条件范围。由于道路的早期阶段处于良好的服务水平,因此在第一年不需要重型维护实践。后来,经过重型的M&R作用,有几个1-2岁的治疗方法。所有这些都表明拟议的计划具有逻辑结果。决策者和运输机构可以使用此计划进行更好的维护实践,以防止预算浪费,同时最大限度地减少环境影响。
translated by 谷歌翻译
通过加强学习解决现实世界的顺序决策问题(RL)通常始于使用模拟真实条件的模拟环境。我们为现实的农作物管理任务提供了一种新颖的开源RL环境。 Gym-DSSAT是高保真作物模拟器的农业技术转移决策支持系统(DSSAT)的健身房界面。在过去的30年中,DSSAT已发展,并被农学家广泛认可。 Gym-DSSAT带有基于现实世界玉米实验的预定义仿真。环境与任何健身房环境一样易于使用。我们使用基本RL算法提供性能基准。我们还简要概述了用Fortran编写的单片DSSAT模拟器如何变成Python RL环境。我们的方法是通用的,可以应用于类似的模拟器。我们报告了非常初步的实验结果,这表明RL可以帮助研究人员改善受精和灌溉实践的可持续性。
translated by 谷歌翻译
多代理深度增强学习(Marl)缺乏缺乏共同使用的评估任务和标准,使方法之间的比较困难。在这项工作中,我们提供了一个系统评估,并比较了三种不同类别的Marl算法(独立学习,集中式多代理政策梯度,价值分解)在各种协作多智能经纪人学习任务中。我们的实验是在不同学习任务中作为算法的预期性能的参考,我们为不同学习方法的有效性提供了见解。我们开源EPYMARL,它将Pymarl CodeBase扩展到包括其他算法,并允许灵活地配置算法实现细节,例如参数共享。最后,我们开源两种环境,用于多智能经纪研究,重点关注稀疏奖励下的协调。
translated by 谷歌翻译