通过加强学习解决现实世界的顺序决策问题(RL)通常始于使用模拟真实条件的模拟环境。我们为现实的农作物管理任务提供了一种新颖的开源RL环境。 Gym-DSSAT是高保真作物模拟器的农业技术转移决策支持系统(DSSAT)的健身房界面。在过去的30年中,DSSAT已发展,并被农学家广泛认可。 Gym-DSSAT带有基于现实世界玉米实验的预定义仿真。环境与任何健身房环境一样易于使用。我们使用基本RL算法提供性能基准。我们还简要概述了用Fortran编写的单片DSSAT模拟器如何变成Python RL环境。我们的方法是通用的,可以应用于类似的模拟器。我们报告了非常初步的实验结果,这表明RL可以帮助研究人员改善受精和灌溉实践的可持续性。
translated by 谷歌翻译
农作物管理,包括氮(N)受精和灌溉管理,对农作物产量,经济利润和环境产生了重大影响。尽管存在管理指南,但要在特定的种植环境和农作物中找到最佳的管理实践是挑战。先前的工作使用加强学习(RL)和作物模拟器来解决该问题,但是训练有素的政策要么具有有限的性能,要么在现实世界中不可部署。在本文中,我们提出了一种智能作物管理系统,该系统通过RL,模仿学习(IL)同时优化N受精和灌溉,并使用农业技术决策系统(DSSAT)进行了作物模拟。我们首先使用Deep RL,尤其是Deep Q-Network来培训需要从模拟器中的所有状态信息作为观测值(表示为完整观察)的管理政策。然后,我们援引IL来培训管理政策,这些政策只需要有限的国家信息,这些信息可以通过模仿以前的RL训练有素的政策在全面观察中轻松获得的国家(表示为部分观察)。我们在佛罗里达州使用玉米的案例研究进行实验,并将受过训练的政策与玉米管理指南进行比较。我们在全面观察和部分观察中训练有素的政策取得了更好的结果,从而获得更高的利润或类似的利润,而环境影响较小。此外,部分观察管理政策在使用易于使用的信息时直接在现实世界中部署。
translated by 谷歌翻译
我们展示了一种带有Openai健身房界面的作物仿真环境,并应用现代深度加强学习(DRL)算法以优化产量。我们经验表明,DRL算法可用于发现新的政策和方法,以帮助优化作物产量,同时最小化水和肥料使用等约束因素。我们提出这种混合厂建模和数据驱动的方法,用于发现新策略的优化作物产量可能有助于满足越来越多的全球粮食需求,由于人口扩张和气候变化。
translated by 谷歌翻译
Deep reinforcement learning has considerable potential to improve irrigation scheduling in many cropping systems by applying adaptive amounts of water based on various measurements over time. The goal is to discover an intelligent decision rule that processes information available to growers and prescribes sensible irrigation amounts for the time steps considered. Due to the technical novelty, however, the research on the technique remains sparse and impractical. To accelerate the progress, the paper proposes a general framework and actionable procedure that allow researchers to formulate their own optimisation problems and implement solution algorithms based on deep reinforcement learning. The effectiveness of the framework was demonstrated using a case study of irrigated wheat grown in a productive region of Australia where profits were maximised. Specifically, the decision rule takes nine state variable inputs: crop phenological stage, leaf area index, extractable soil water for each of the five top layers, cumulative rainfall and cumulative irrigation. It returns a probabilistic prescription over five candidate irrigation amounts (0, 10, 20, 30 and 40 mm) every day. The production system was simulated at Goondiwindi using the APSIM-Wheat crop model. After training in the learning environment using 1981--2010 weather data, the learned decision rule was tested individually for each year of 2011--2020. The results were compared against the benchmark profits obtained using irrigation schedules optimised individually for each of the considered years. The discovered decision rule prescribed daily irrigation amounts that achieved more than 96% of the benchmark profits. The framework is general and applicable to a wide range of cropping systems with realistic optimisation problems.
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
A long-standing challenge in artificial intelligence is lifelong learning. In lifelong learning, many tasks are presented in sequence and learners must efficiently transfer knowledge between tasks while avoiding catastrophic forgetting over long lifetimes. On these problems, policy reuse and other multi-policy reinforcement learning techniques can learn many tasks. However, they can generate many temporary or permanent policies, resulting in memory issues. Consequently, there is a need for lifetime-scalable methods that continually refine a policy library of a pre-defined size. This paper presents a first approach to lifetime-scalable policy reuse. To pre-select the number of policies, a notion of task capacity, the maximal number of tasks that a policy can accurately solve, is proposed. To evaluate lifetime policy reuse using this method, two state-of-the-art single-actor base-learners are compared: 1) a value-based reinforcement learner, Deep Q-Network (DQN) or Deep Recurrent Q-Network (DRQN); and 2) an actor-critic reinforcement learner, Proximal Policy Optimisation (PPO) with or without Long Short-Term Memory layer. By selecting the number of policies based on task capacity, D(R)QN achieves near-optimal performance with 6 policies in a 27-task MDP domain and 9 policies in an 18-task POMDP domain; with fewer policies, catastrophic forgetting and negative transfer are observed. Due to slow, monotonic improvement, PPO requires fewer policies, 1 policy for the 27-task domain and 4 policies for the 18-task domain, but it learns the tasks with lower accuracy than D(R)QN. These findings validate lifetime-scalable policy reuse and suggest using D(R)QN for larger and PPO for smaller library sizes.
translated by 谷歌翻译
加强学习(RL)研究的进展通常是由新的,具有挑战性的环境的设计驱动的,这是一项昂贵的事业,需要技能与典型的机器学习研究人员的正交性。环境发展的复杂性仅随着程序性产生(PCG)的兴起而增加,作为产生能够测试RL剂稳健性和泛化的各种环境的流行范式。此外,现有环境通常需要复杂的构建过程,从而使重现结果变得困难。为了解决这些问题,我们介绍了基于网状引擎的基于网络的集成开发环境(IDE)Griddlyjs。 Griddlyjs允许研究人员使用方便的图形接口在视觉上设计和调试任意,复杂的PCG网格世界环境,并可视化,评估和记录训练有素的代理模型的性能。通过将RL工作流连接到由现代Web标准启用的高级功能,Griddlyjs允许发布交互式代理 - 环境演示,将实验结果直接重现为Web。为了证明Griddlyjs的多功能性,我们使用它来快速开发一个复杂的组成拼图解决环境,以及任意人为设计的环境配置及其用于自动课程学习和离线RL的解决方案。 Griddlyjs IDE是开源的,可以在\ url {https://griddly.ai}上免费获得。
translated by 谷歌翻译
随着自动驾驶行业的发展,自动驾驶汽车群体的潜在相互作用也随之增长。结合人工智能和模拟的进步,可以模拟此类组,并且可以学习控制内部汽车的安全模型。这项研究将强化学习应用于多代理停车场的问题,在那里,汽车旨在有效地停车,同时保持安全和理性。利用强大的工具和机器学习框架,我们以马尔可夫决策过程的形式与独立学习者一起设计和实施灵活的停车环境,从而利用多代理通信。我们实施了一套工具来进行大规模执行实验,从而取得了超过98.1%成功率的高达7辆汽车的模型,从而超过了现有的单代机构模型。我们还获得了与汽车在我们环境中表现出的竞争性和协作行为有关的几个结果,这些行为的密度和沟通水平各不相同。值得注意的是,我们发现了一种没有竞争的合作形式,以及一种“泄漏”的合作形式,在没有足够状态的情况下,代理商进行了协作。这种工作在自动驾驶和车队管理行业中具有许多潜在的应用,并为将强化学习应用于多机构停车场提供了几种有用的技术和基准。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
我们提出了一个混合工业冷却系统模型,该模型将分析解决方案嵌入多物理模拟中。该模型设计用于增强学习(RL)应用程序,并平衡简单性与模拟保真度和解释性。该模型的忠诚度根据大规模冷却系统的现实世界数据进行了评估。接下来是一个案例研究,说明如何将模型用于RL研究。为此,我们开发了一个工业任务套件,该套件允许指定不同的问题设置和复杂性水平,并使用它来评估不同RL算法的性能。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
Safe Reinforcement Learning can be defined as the process of learning policies that maximize the expectation of the return in problems in which it is important to ensure reasonable system performance and/or respect safety constraints during the learning and/or deployment processes. We categorize and analyze two approaches of Safe Reinforcement Learning. The first is based on the modification of the optimality criterion, the classic discounted finite/infinite horizon, with a safety factor. The second is based on the modification of the exploration process through the incorporation of external knowledge or the guidance of a risk metric. We use the proposed classification to survey the existing literature, as well as suggesting future directions for Safe Reinforcement Learning.
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
Compared with model-based control and optimization methods, reinforcement learning (RL) provides a data-driven, learning-based framework to formulate and solve sequential decision-making problems. The RL framework has become promising due to largely improved data availability and computing power in the aviation industry. Many aviation-based applications can be formulated or treated as sequential decision-making problems. Some of them are offline planning problems, while others need to be solved online and are safety-critical. In this survey paper, we first describe standard RL formulations and solutions. Then we survey the landscape of existing RL-based applications in aviation. Finally, we summarize the paper, identify the technical gaps, and suggest future directions of RL research in aviation.
translated by 谷歌翻译
软件测试活动旨在找到软件产品的可能缺陷,并确保该产品满足其预期要求。一些软件测试接近的方法缺乏自动化或部分自动化,这增加了测试时间和整体软件测试成本。最近,增强学习(RL)已成功地用于复杂的测试任务中,例如游戏测试,回归测试和测试案例优先级,以自动化该过程并提供持续的适应。从业者可以通过从头开始实现RL算法或使用RL框架来使用RL。开发人员已广泛使用这些框架来解决包括软件测试在内的各个领域中的问题。但是,据我们所知,尚无研究从经验上评估RL框架中实用算法的有效性和性能。在本文中,我们凭经验研究了精心选择的RL算法在两个重要的软件测试任务上的应用:在连续集成(CI)和游戏测试的上下文中测试案例的优先级。对于游戏测试任务,我们在简单游戏上进行实验,并使用RL算法探索游戏以检测错误。结果表明,一些选定的RL框架,例如Tensorforce优于文献的最新方法。为了确定测试用例的优先级,我们在CI环境上运行实验,其中使用来自不同框架的RL算法来对测试用例进行排名。我们的结果表明,在某些情况下,预实算算法之间的性能差异很大,激励了进一步的研究。此外,建议对希望选择RL框架的研究人员进行一些基准问题的经验评估,以确保RL算法按预期执行。
translated by 谷歌翻译
Drug dosing is an important application of AI, which can be formulated as a Reinforcement Learning (RL) problem. In this paper, we identify two major challenges of using RL for drug dosing: delayed and prolonged effects of administering medications, which break the Markov assumption of the RL framework. We focus on prolongedness and define PAE-POMDP (Prolonged Action Effect-Partially Observable Markov Decision Process), a subclass of POMDPs in which the Markov assumption does not hold specifically due to prolonged effects of actions. Motivated by the pharmacology literature, we propose a simple and effective approach to converting drug dosing PAE-POMDPs into MDPs, enabling the use of the existing RL algorithms to solve such problems. We validate the proposed approach on a toy task, and a challenging glucose control task, for which we devise a clinically-inspired reward function. Our results demonstrate that: (1) the proposed method to restore the Markov assumption leads to significant improvements over a vanilla baseline; (2) the approach is competitive with recurrent policies which may inherently capture the prolonged effect of actions; (3) it is remarkably more time and memory efficient than the recurrent baseline and hence more suitable for real-time dosing control systems; and (4) it exhibits favorable qualitative behavior in our policy analysis.
translated by 谷歌翻译
Machine learning frameworks such as Genetic Programming (GP) and Reinforcement Learning (RL) are gaining popularity in flow control. This work presents a comparative analysis of the two, bench-marking some of their most representative algorithms against global optimization techniques such as Bayesian Optimization (BO) and Lipschitz global optimization (LIPO). First, we review the general framework of the model-free control problem, bringing together all methods as black-box optimization problems. Then, we test the control algorithms on three test cases. These are (1) the stabilization of a nonlinear dynamical system featuring frequency cross-talk, (2) the wave cancellation from a Burgers' flow and (3) the drag reduction in a cylinder wake flow. We present a comprehensive comparison to illustrate their differences in exploration versus exploitation and their balance between `model capacity' in the control law definition versus `required complexity'. We believe that such a comparison paves the way toward the hybridization of the various methods, and we offer some perspective on their future development in the literature on flow control problems.
translated by 谷歌翻译
Reinforcement learning (RL) gained considerable attention by creating decision-making agents that maximize rewards received from fully observable environments. However, many real-world problems are partially or noisily observable by nature, where agents do not receive the true and complete state of the environment. Such problems are formulated as partially observable Markov decision processes (POMDPs). Some studies applied RL to POMDPs by recalling previous decisions and observations or inferring the true state of the environment from received observations. Nevertheless, aggregating observations and decisions over time is impractical for environments with high-dimensional continuous state and action spaces. Moreover, so-called inference-based RL approaches require large number of samples to perform well since agents eschew uncertainty in the inferred state for the decision-making. Active inference is a framework that is naturally formulated in POMDPs and directs agents to select decisions by minimising expected free energy (EFE). This supplies reward-maximising (exploitative) behaviour in RL, with an information-seeking (exploratory) behaviour. Despite this exploratory behaviour of active inference, its usage is limited to discrete state and action spaces due to the computational difficulty of the EFE. We propose a unified principle for joint information-seeking and reward maximization that clarifies a theoretical connection between active inference and RL, unifies active inference and RL, and overcomes their aforementioned limitations. Our findings are supported by strong theoretical analysis. The proposed framework's superior exploration property is also validated by experimental results on partial observable tasks with high-dimensional continuous state and action spaces. Moreover, the results show that our model solves reward-free problems, making task reward design optional.
translated by 谷歌翻译