在最近的方法论文中,我们展示了如何使用当地集合卡尔曼滤波器来学习混沌动力学以及状态轨迹。在这里,我们更系统地调查使用具有协方差定位或本地域的本地集合卡尔曼滤波器的可能性,以便检索状态和密钥全局和本地参数的混合。全局参数旨在代表代理动态核心,例如通过神经网络,这些核心让人想起数据驱动的动态机器学习,而本地参数通常代表模型的强制。针对联合状态和参数估计,提出了一种用于协方差和局域定位的一系列算法。特别是,我们展示了如何使用诸如本地集合变换卡尔曼滤波器(LetkF),这是一个固有的本地方法的本地域集合Kalman滤波器(ENKF)严格更新全局参数。使用几种本地ENKF味道在40变量LORENZ模型上取得了成功测试方法。最终提供基于多层Lorenz模型的二维图示。它使用辐射状的非本地观测。它具有本地域名和协方差本地化,以便学习混沌动态和本地强制。本文始终涉及全局和本地模型参数的在线估计的关键问题。
translated by 谷歌翻译
生产精确的天气预报和不确定的不确定性的可靠量化是一个开放的科学挑战。到目前为止,集团预测是最成功的方法,以产生相关预测的方法以及估计其不确定性。集合预测的主要局限性是高计算成本,难以捕获和量化不同的不确定性来源,特别是与模型误差相关的源。在这项工作中,进行概念证据模型实验,以检查培训的ANN的性能,以预测系统的校正状态和使用单个确定性预测作为输入的状态不确定性。我们比较不同的培训策略:一个基于使用集合预测的平均值和传播作为目标的直接培训,另一个依赖于使用确定性预测作为目标的决定性预测,其中来自数据隐含地学习不确定性。对于最后一种方法,提出和评估了两个替代损失函数,基于数据观察似然和基于误差的本地估计来评估另一个丢失功能。在不同的交货时间和方案中检查网络的性能,在没有模型错误的情况下。使用Lorenz'96模型的实验表明,ANNS能够模拟集合预测的一些属性,如最不可预测模式的过滤和预测不确定性的状态相关量化。此外,ANNS提供了在模型误差存在下的预测不确定性的可靠估计。
translated by 谷歌翻译
数据同化(DA)是科学和工程中许多预测模型的关键组成部分。 DA允许使用系统的不完善动力学模型以及系统可用的嘈杂/稀疏观测来估算更好的初始条件。集合Kalman滤波器(ENKF)是一种DA算法,该算法广泛用于涉及高维非线性动力学系统的应用中。但是,ENKF需要使用系统的动力学模型来进化的大型预测集合。这通常在计算上棘手,尤其是当系统的状态数量很大时,例如天气预测。在小合奏的情况下,ENKF算法中的估计背景误差协方差矩阵患有采样误差,导致分析状态的错误估计(下一个预测周期的初始条件)。在这项工作中,我们提出了混合集合卡尔曼滤波器(H-ENKF),该滤波器被应用于两层准地球体流动系统作为测试案例。该框架利用了预先训练的基于学习的数据驱动的替代物,该替代物可廉价地生成和进化系统状态的大型数据驱动的集合,以准确计算背景错误协方差矩阵,而采样误差较少。 H-ENKF框架估算了更好的初始条件,而无需任何临时本地化策略。 H-ENKF可以扩展到任何基于集合的DA算法,例如粒子过滤器,这些粒子过滤器目前难以用于高维系统。
translated by 谷歌翻译
提出了用于基于合奏的估计和模拟高维动力系统(例如海洋或大气流)的方法学框架。为此,动态系统嵌入了一个由动力学驱动的内核功能的繁殖核Hilbert空间的家族中。这个家庭因其吸引人的财产而被昵称为仙境。在梦游仙境中,Koopman和Perron-Frobenius操作员是统一且均匀的。该属性保证它们可以在一系列可对角线的无限发电机中表达。访问Lyapunov指数和切线线性动力学的精确集合表达式也可以直接可用。仙境使我们能够根据轨迹样本的恒定时间线性组合来设计出惊人的简单集合数据同化方法。通过几个基本定理的完全合理的叠加原则,使这种令人尴尬的简单策略成为可能。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
基于时间序列观测数据,数据同化技术广泛用于预测具有不确定性的复杂动态系统。错误协方差矩阵建模是数据同化算法中的重要元素,其可以大大影响预测精度。这些协方差通常依赖于经验假设和物理限制的估计通常是不精确的,并且计算昂贵的昂贵,特别是对于大维度的系统。在这项工作中,我们提出了一种基于长短短期存储器(LSTM)经常性神经网络(RNN)的数据驱动方法,以提高观察协方差规范的准确性和效率的动态系统中的数据同化。与观察/模拟时间序列数据学习协方差矩阵,不同的方法不需要任何关于先前错误分布的知识或假设,而不是经典的后调整方法。我们将新的方法与两个最先进的协方差调谐算法进行了比较,即DI01和D05,首先在Lorenz动态系统中,然后在2D浅水双实验框架中,使用集合同化使用不同的协方差参数化。这种新方法在观察协方差规范,同化精度和计算效率方面具有显着的优势。
translated by 谷歌翻译
混沌系统中仿真预测的准确性严重依赖于预测初始化时系统状态的高质量估计。数据同化方法用于通过系统地结合噪音,不完整的观察和系统动态的数值模型来推断这些初始条件,以产生有效的估计方案。我们介绍了摊销同化,这是一种学习的框架,用于从嘈杂的观察序列中吸收动态系统,无需基础真理数据。我们通过使用可分辨率模拟来激励来自自我监控的自我监督剥夺到动态系统设置的强大结果来激励框架。跨几台基准系统的实验结果突出了我们对广泛使用的数据同化方法的提高效果。
translated by 谷歌翻译
出现集合随机滤清器(ERFF)作为逆建模的替代品的替代卡尔曼滤波器(ENKF)。 ENKF是一种数据同化方法,随着观察结果的收集,可以依次依次估算参数估计参数。更新步骤是基于从实现集合中计算出的实验协方差,并将更新作为线性组合,是观测值和预测的系统状态值之间差异的线性组合。 ERFF用随机森林表示的非线性函数代替更新步骤中的线性组合。这样,可以捕获要更新的参数与观察值之间的非线性关系,并产生更好的更新。在许多方案中,有不同程度的异质性(对数电导率变异从1到6.25(ln m/d)2),在许多方案中,证明了ERFF的对数指导性识别的目的。合奏(50或100),以及打击头观测的数量(18或36)。在所有情况下,ERFF效果很好,能够重建对数传导性空间异质性,同时匹配所选控制点处观察到的压电头。为了进行基准测试,将ERFF与重新启动ENKF进行了比较,以发现ERFF在使用的集合实现的数量(在典型的ENKF应用中很小)中优于ENKF。只有当实现的数量增加到500时,重新启动ENKF才能匹配ERFF的性能,尽管计算成本三倍。
translated by 谷歌翻译
我们介绍了一种确定全局特征解耦的方法,并显示其适用于提高数据分析性能的适用性,并开放了新的场所以进行功能传输。我们提出了一种新的形式主义,该形式主义是基于沿特征梯度遵循轨迹来定义对子曼群的转换的。通过这些转换,我们定义了一个归一化,我们证明,它允许解耦可区分的特征。通过将其应用于采样矩,我们获得了用于正骨的准分析溶液,正尾肌肉是峰度的归一化版本,不仅与平均值和方差相关,而且还与偏度相关。我们将此方法应用于原始数据域和过滤器库的输出中,以基于全局描述符的回归和分类问题,与使用经典(未删除)描述符相比,性能得到一致且显着的改进。
translated by 谷歌翻译
Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets.This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed-either explicitly or implicitly-to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis.The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast with O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multi-processor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
translated by 谷歌翻译
高斯进程(GPS)是通过工程学的社会和自然科学的应用程序学习和统计数据的重要工具。它们构成具有良好校准的不确定性估计的强大的内核非参数方法,然而,由于其立方计算复杂度,从货架上的GP推理程序仅限于具有数千个数据点的数据集。因此,在过去几年中已经开发出许多稀疏的GPS技术。在本文中,我们专注于GP回归任务,并提出了一种基于来自几个本地和相关专家的聚合预测的新方法。因此,专家之间的相关程度可以在独立于完全相关的专家之间变化。考虑到他们的相关性导致了一致的不确定性估算,汇总了专家的个人预测。我们的方法在限制案件中恢复了专家的独立产品,稀疏GP和全GP。呈现的框架可以处理一般的内核函数和多个变量,并且具有时间和空间复杂性,在专家和数据样本的数量中是线性的,这使得我们的方法是高度可扩展的。我们展示了我们提出的方法的卓越性能,这是我们提出的综合性和几个实际数据集的最先进的GP近似方法的卓越性能,以及具有确定性和随机优化的若干现实世界数据集。
translated by 谷歌翻译
本文介绍了在高斯过程回归/克里格替代建模技术中选择/设计内核的算法。我们在临时功能空间中采用内核方法解决方案的设置,即繁殖内核希尔伯特空间(RKHS),以解决在观察到它的观察值的情况下近似定期目标函数的问题,即监督学习。第一类算法是内核流,该算法是在机器学习中的分类中引入的。它可以看作是一个交叉验证过程,因此选择了“最佳”内核,从而最小化了通过删除数据集的某些部分(通常为一半)而产生的准确性损失。第二类算法称为光谱内核脊回归,旨在选择“最佳”核,以便在相关的RKHS中,要近似的函数的范围很小。在Mercer定理框架内,我们就目标函数的主要特征来获得该“最佳”内核的明确结构。从数据中学习内核的两种方法均通过有关合成测试功能的数值示例,以及在湍流建模验证二维机翼的湍流模型验证中的经典测试用例。
translated by 谷歌翻译
We study a multi-factor block model for variable clustering and connect it to the regularized subspace clustering by formulating a distributionally robust version of the nodewise regression. To solve the latter problem, we derive a convex relaxation, provide guidance on selecting the size of the robust region, and hence the regularization weighting parameter, based on the data, and propose an ADMM algorithm for implementation. We validate our method in an extensive simulation study. Finally, we propose and apply a variant of our method to stock return data, obtain interpretable clusters that facilitate portfolio selection and compare its out-of-sample performance with other clustering methods in an empirical study.
translated by 谷歌翻译
本论文主要涉及解决深层(时间)高斯过程(DGP)回归问题的状态空间方法。更具体地,我们代表DGP作为分层组合的随机微分方程(SDES),并且我们通过使用状态空间过滤和平滑方法来解决DGP回归问题。由此产生的状态空间DGP(SS-DGP)模型生成丰富的电视等级,与建模许多不规则信号/功能兼容。此外,由于他们的马尔可道结构,通过使用贝叶斯滤波和平滑方法可以有效地解决SS-DGPS回归问题。本论文的第二次贡献是我们通过使用泰勒力矩膨胀(TME)方法来解决连续离散高斯滤波和平滑问题。这诱导了一类滤波器和SmooThers,其可以渐近地精确地预测随机微分方程(SDES)解决方案的平均值和协方差。此外,TME方法和TME过滤器和SmoOthers兼容模拟SS-DGP并解决其回归问题。最后,本文具有多种状态 - 空间(深)GPS的应用。这些应用主要包括(i)来自部分观察到的轨迹的SDES的未知漂移功能和信号的光谱 - 时间特征估计。
translated by 谷歌翻译
基于近似基础的Koopman操作员或发电机的数据驱动的非线性动力系统模型已被证明是预测,功能学习,状态估计和控制的成功工具。众所周知,用于控制膜系统的Koopman发电机还对输入具有仿射依赖性,从而导致动力学的方便有限维双线性近似。然而,仍然存在两个主要障碍,限制了当前方法的范围,以逼近系统的koopman发电机。首先,现有方法的性能在很大程度上取决于要近似Koopman Generator的基础函数的选择;目前,目前尚无通用方法来为无法衡量保存的系统选择它们。其次,如果我们不观察到完整的状态,我们可能无法访问足够丰富的此类功能来描述动态。这是因为在有驱动时,通常使用时间延迟的可观察物的方法失败。为了解决这些问题,我们将Koopman Generator控制的可观察到的动力学写为双线性隐藏Markov模型,并使用预期最大化(EM)算法确定模型参数。 E-Step涉及标准的Kalman滤波器和更光滑,而M-Step类似于发电机的控制效果模式分解。我们在三个示例上证明了该方法的性能,包括恢复有限的Koopman-Invariant子空间,用于具有缓慢歧管的驱动系统;估计非强制性行驶方程的Koopman本征函数;仅基于提升和阻力的嘈杂观察,对流体弹球系统的模型预测控制。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
贝叶斯推理允许在贝叶斯神经网络的上下文中获取有关模型参数的有用信息,或者在贝叶斯神经网络的背景下。通常的Monte Carlo方法的计算成本,用于在贝叶斯推理中对贝叶斯推理的后验法律进行线性点的数量与数据点的数量进行线性。将其降低到这一成本的一小部分的一种选择是使用Langevin动态的未经调整的离散化来诉诸Mini-Batching,在这种情况下,只使用数据的随机分数来估计梯度。然而,这导致动态中的额外噪声,因此在马尔可夫链采样的不变度量上的偏差。我们倡导使用所谓的自适应Langevin动态,这是一种改进标准惯性Langevin动态,其动态摩擦力,可自动校正迷你批次引起的增加的噪声。我们调查假设适应性Langevin的假设(恒定协方差估计梯度的恒定协方差),这在贝叶斯推理的典型模型中不满足,并在这种情况下量化小型匹配诱导的偏差。我们还展示了如何扩展ADL,以便通过考虑根据参数的当前值来系统地减少后部分布的偏置。
translated by 谷歌翻译
许多操作数值天气预报系统中使用的数据同化程序基于4D-VAR算法的变体。解决4D-VAR问题的成本是由物理模型的前进和伴随评估的成本为主。这通过快速,近似代理模型来激励他们的替代。神经网络为代理模型的数据驱动创建提供了一个有希望的方法。已显示代理4D-VAR问题解决方案的准确性,明确地依赖于对其他代理建模方法和一般非线性设置的准确建模和伴随的准确建模。我们制定和分析若干方法,将衍生信息纳入神经网络替代品的构建。通过训练集数据和Lorenz-63系统上的顺序数据同化设置来测试生成的网络。与没有伴随信息的替代网络培训的代理网络相比,两种方法表现出卓越的性能,显示将伴随信息纳入训练过程的益处。
translated by 谷歌翻译
我们开发了一种多尺度方法,以从实验或模拟中观察到的物理字段或配置的数据集估算高维概率分布。通过这种方式,我们可以估计能量功能(或哈密顿量),并有效地在从统计物理学到宇宙学的各个领域中生成多体系统的新样本。我们的方法 - 小波条件重新归一化组(WC-RG) - 按比例进行估算,以估算由粗粒磁场来调节的“快速自由度”的条件概率的模型。这些概率分布是由与比例相互作用相关的能量函数建模的,并以正交小波为基础表示。 WC-RG将微观能量函数分解为各个尺度上的相互作用能量之和,并可以通过从粗尺度到细度来有效地生成新样品。近相变,它避免了直接估计和采样算法的“临界减速”。理论上通过结合RG和小波理论的结果来解释这一点,并为高斯和$ \ varphi^4 $字段理论进行数值验证。我们表明,多尺度WC-RG基于能量的模型比局部电位模型更通用,并且可以在所有长度尺度上捕获复杂的多体相互作用系统的物理。这是针对反映宇宙学中暗物质分布的弱透镜镜头的,其中包括与长尾概率分布的长距离相互作用。 WC-RG在非平衡系统中具有大量的潜在应用,其中未知基础分布{\ it先验}。最后,我们讨论了WC-RG和深层网络体系结构之间的联系。
translated by 谷歌翻译