基于时间序列观测数据,数据同化技术广泛用于预测具有不确定性的复杂动态系统。错误协方差矩阵建模是数据同化算法中的重要元素,其可以大大影响预测精度。这些协方差通常依赖于经验假设和物理限制的估计通常是不精确的,并且计算昂贵的昂贵,特别是对于大维度的系统。在这项工作中,我们提出了一种基于长短短期存储器(LSTM)经常性神经网络(RNN)的数据驱动方法,以提高观察协方差规范的准确性和效率的动态系统中的数据同化。与观察/模拟时间序列数据学习协方差矩阵,不同的方法不需要任何关于先前错误分布的知识或假设,而不是经典的后调整方法。我们将新的方法与两个最先进的协方差调谐算法进行了比较,即DI01和D05,首先在Lorenz动态系统中,然后在2D浅水双实验框架中,使用集合同化使用不同的协方差参数化。这种新方法在观察协方差规范,同化精度和计算效率方面具有显着的优势。
translated by 谷歌翻译
数据同化(DA)是科学和工程中许多预测模型的关键组成部分。 DA允许使用系统的不完善动力学模型以及系统可用的嘈杂/稀疏观测来估算更好的初始条件。集合Kalman滤波器(ENKF)是一种DA算法,该算法广泛用于涉及高维非线性动力学系统的应用中。但是,ENKF需要使用系统的动力学模型来进化的大型预测集合。这通常在计算上棘手,尤其是当系统的状态数量很大时,例如天气预测。在小合奏的情况下,ENKF算法中的估计背景误差协方差矩阵患有采样误差,导致分析状态的错误估计(下一个预测周期的初始条件)。在这项工作中,我们提出了混合集合卡尔曼滤波器(H-ENKF),该滤波器被应用于两层准地球体流动系统作为测试案例。该框架利用了预先训练的基于学习的数据驱动的替代物,该替代物可廉价地生成和进化系统状态的大型数据驱动的集合,以准确计算背景错误协方差矩阵,而采样误差较少。 H-ENKF框架估算了更好的初始条件,而无需任何临时本地化策略。 H-ENKF可以扩展到任何基于集合的DA算法,例如粒子过滤器,这些粒子过滤器目前难以用于高维系统。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
在本文中,我们提出了一种深度学习技术,用于数据驱动的流体介质中波传播的预测。该技术依赖于基于注意力的卷积复发自动编码器网络(AB-CRAN)。为了构建波传播数据的低维表示,我们采用了基于转化的卷积自动编码器。具有基于注意力的长期短期记忆细胞的AB-CRAN体系结构构成了我们的深度神经网络模型,用于游行低维特征的时间。我们评估了针对标准复发性神经网络的拟议的AB-Cran框架,用于波传播的低维学习。为了证明AB-Cran模型的有效性,我们考虑了三个基准问题,即一维线性对流,非线性粘性汉堡方程和二维圣人浅水系统。我们的新型AB-CRAN结构使用基准问题的空间 - 时空数据集,可以准确捕获波幅度,并在长期范围内保留溶液的波特性。与具有长期短期记忆细胞的标准复发性神经网络相比,基于注意力的序列到序列网络增加了预测的时间莫。 Denoising自动编码器进一步减少了预测的平方平方误差,并提高了参数空间中的概括能力。
translated by 谷歌翻译
基于近似基础的Koopman操作员或发电机的数据驱动的非线性动力系统模型已被证明是预测,功能学习,状态估计和控制的成功工具。众所周知,用于控制膜系统的Koopman发电机还对输入具有仿射依赖性,从而导致动力学的方便有限维双线性近似。然而,仍然存在两个主要障碍,限制了当前方法的范围,以逼近系统的koopman发电机。首先,现有方法的性能在很大程度上取决于要近似Koopman Generator的基础函数的选择;目前,目前尚无通用方法来为无法衡量保存的系统选择它们。其次,如果我们不观察到完整的状态,我们可能无法访问足够丰富的此类功能来描述动态。这是因为在有驱动时,通常使用时间延迟的可观察物的方法失败。为了解决这些问题,我们将Koopman Generator控制的可观察到的动力学写为双线性隐藏Markov模型,并使用预期最大化(EM)算法确定模型参数。 E-Step涉及标准的Kalman滤波器和更光滑,而M-Step类似于发电机的控制效果模式分解。我们在三个示例上证明了该方法的性能,包括恢复有限的Koopman-Invariant子空间,用于具有缓慢歧管的驱动系统;估计非强制性行驶方程的Koopman本征函数;仅基于提升和阻力的嘈杂观察,对流体弹球系统的模型预测控制。
translated by 谷歌翻译
映射近场污染物的浓度对于跟踪城市地区意外有毒羽状分散体至关重要。通过求解大部分湍流谱,大型模拟(LES)具有准确表示污染物浓度空间变异性的潜力。找到一种合成大量信息的方法,以提高低保真操作模型的准确性(例如,提供更好的湍流封闭条款)特别有吸引力。这是一个挑战,在多质量环境中,LES的部署成本高昂,以了解羽流和示踪剂分散如何随着各种大气和源参数的变化。为了克服这个问题,我们提出了一个合并正交分解(POD)和高斯过程回归(GPR)的非侵入性降低阶模型,以预测与示踪剂浓度相关的LES现场统计。通过最大的后验(MAP)过程,GPR HyperParameter是通过POD告知的最大后验(MAP)过程来优化组件的。我们在二维案例研究上提供了详细的分析,该案例研究对应于表面安装的障碍物上的湍流大气边界层流。我们表明,障碍物上游的近源浓度异质性需要大量的POD模式才能得到充分捕获。我们还表明,逐组分的优化允许捕获POD模式中的空间尺度范围,尤其是高阶模式中较短的浓度模式。如果学习数据库由至少五十至100个LES快照制成,则可以首先估算所需的预算,以朝着更逼真的大气分散应用程序迈进,因此减少订单模型的预测仍然可以接受。
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
数字双胞胎已成为优化工程产品和系统性能的关键技术。高保真数值模拟构成了工程设计的骨干,从而准确地了解了复杂系统的性能。但是,大规模的,动态的非线性模型需要大量的计算资源,并且对于实时数字双胞胎应用而言是高度的。为此,采用了减少的订单模型(ROM),以近似高保真解决方案,同时准确捕获身体行为的主要方面。本工作提出了一个新的机器学习(ML)平台,用于开发ROM,以处理处理瞬态非线性偏微分方程的大规模数值问题。我们的框架被称为$ \ textit {fastsvd-ml-rom} $,利用$ \ textit {(i)} $单数值分解(SVD)更新方法,以计算多效性解决方案的线性子空间仿真过程,$ \ textIt {(ii)} $降低非线性维度的卷积自动编码器,$ \ textit {(iii)} $ feed-feed-feed-forderward神经网络以将输入参数映射到潜在的空间,以及$ \ textit {(iv) )} $长的短期内存网络,以预测和预测参数解决方案的动力学。 $ \ textit {fastsvd-ml-rom} $框架的效率用于2D线性对流扩散方程,圆柱周围的流体问题以及动脉段内的3D血流。重建结果的准确性证明了鲁棒性,并评估了所提出的方法的效率。
translated by 谷歌翻译
在许多科学学科中,我们有兴趣推断一组观察到的时间序列的非线性动力学系统,这是面对混乱的行为和噪音,这是一项艰巨的任务。以前的深度学习方法实现了这一目标,通常缺乏解释性和障碍。尤其是,即使基本动力学生存在较低维的多种多样的情况下,忠实嵌入通常需要的高维潜在空间也会阻碍理论分析。在树突计算的新兴原则的推动下,我们通过线性样条基础扩展增强了动态解释和数学可牵引的分段线性(PL)复发性神经网络(RNN)。我们表明,这种方法保留了简单PLRNN的所有理论上吸引人的特性,但在相对较低的尺寸中提高了其近似任意非线性动态系统的能力。我们采用两个框架来训练该系统,一个将反向传播的时间(BPTT)与教师强迫结合在一起,另一个将基于快速可扩展的变异推理的基础。我们表明,树枝状扩展的PLRNN可以在各种动力学系统基准上获得更少的参数和尺寸,并与其他方法进行比较,同时保留了可拖动和可解释的结构。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
生产精确的天气预报和不确定的不确定性的可靠量化是一个开放的科学挑战。到目前为止,集团预测是最成功的方法,以产生相关预测的方法以及估计其不确定性。集合预测的主要局限性是高计算成本,难以捕获和量化不同的不确定性来源,特别是与模型误差相关的源。在这项工作中,进行概念证据模型实验,以检查培训的ANN的性能,以预测系统的校正状态和使用单个确定性预测作为输入的状态不确定性。我们比较不同的培训策略:一个基于使用集合预测的平均值和传播作为目标的直接培训,另一个依赖于使用确定性预测作为目标的决定性预测,其中来自数据隐含地学习不确定性。对于最后一种方法,提出和评估了两个替代损失函数,基于数据观察似然和基于误差的本地估计来评估另一个丢失功能。在不同的交货时间和方案中检查网络的性能,在没有模型错误的情况下。使用Lorenz'96模型的实验表明,ANNS能够模拟集合预测的一些属性,如最不可预测模式的过滤和预测不确定性的状态相关量化。此外,ANNS提供了在模型误差存在下的预测不确定性的可靠估计。
translated by 谷歌翻译
许多操作数值天气预报系统中使用的数据同化程序基于4D-VAR算法的变体。解决4D-VAR问题的成本是由物理模型的前进和伴随评估的成本为主。这通过快速,近似代理模型来激励他们的替代。神经网络为代理模型的数据驱动创建提供了一个有希望的方法。已显示代理4D-VAR问题解决方案的准确性,明确地依赖于对其他代理建模方法和一般非线性设置的准确建模和伴随的准确建模。我们制定和分析若干方法,将衍生信息纳入神经网络替代品的构建。通过训练集数据和Lorenz-63系统上的顺序数据同化设置来测试生成的网络。与没有伴随信息的替代网络培训的代理网络相比,两种方法表现出卓越的性能,显示将伴随信息纳入训练过程的益处。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
动力学受部分微分方程(PDE)控制的物理系统在许多领域(从工程设计到天气预报)中找到了应用。从此类PDE中获取解决方案的过程对于大规模和参数化问题的计算昂贵。在这项工作中,使用LSTM和TCN等时间表预测开发的深度学习技术,或用于为CNN等空间功能提取而开发的,用于建模系统动力学,以占主导问题。这些模型将输入作为从PDE获得的连续时间步长的一系列高保真矢量解,并预测使用自动回归的后续时间步长的解决方案;从而减少获得此类高保真解决方案所需的计算时间和功率。这些模型经过数值基准测试(1D汉堡的方程式和Stoker的大坝断裂问题),以评估长期预测准确性,甚至在训练域之外(外推)。在向预测模型输入之前,使用非侵入性的降低订购建模技术(例如深度自动编码网络)来压缩高保真快照,以减少在线和离线阶段的复杂性和所需的计算。深层合奏被用来对预测模型进行不确定性量化,该模型提供了有关认知不确定性导致预测方差的信息。
translated by 谷歌翻译
我们建议采用统计回归作为投影操作员,以使数据驱动以数据为基础的Mori-Zwanzig形式主义中的运营商学习。我们提出了一种原则性方法,用于为任何回归模型提取Markov和内存操作员。我们表明,线性回归的选择导致了基于Mori的投影操作员最近提出的数据驱动的学习算法,这是一种高阶近似Koopman学习方法。我们表明,更具表现力的非线性回归模型自然填补了高度理想化和计算有效的MORI投影操作符和最佳迄今为止计算上最佳的Zwanzig投影仪之间的差距。我们进行了数值实验,并提取了一系列基于回归的投影的运算符,包括线性,多项式,样条和基于神经网络的回归,随着回归模型的复杂性的增加而显示出渐进的改进。我们的命题提供了一个通用框架来提取内存依赖性校正,并且可以轻松地应用于文献中固定动力学系统的一系列数据驱动的学习方法。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
估计河床型材,也称为沐浴型,在许多应用中起着至关重要的作用,例如安全有效的内陆导航,对银行侵蚀,地面沉降和洪水风险管理的预测。直接沐浴术调查的高成本和复杂物流,即深度成像,鼓励使用间接测量,例如表面流速。然而,从间接测量估计高分辨率的沐浴族是可以计算地具有挑战性的逆问题。在这里,我们提出了一种基于阶的模型(ROM)的方法,其利用变形的自动化器(VAE),一系列深神经网络,中间具有窄层,以压缩沐浴族和流速信息并加速沐浴逆问题流速测量。在我们的应用中,浅水方程(SWE)具有适当的边界条件(BCS),例如排出和/或自由表面升高,构成前向问题,以预测流速。然后,通过变分编码器在低维度的非线性歧管上构造SWES的ROM。利用不确定性量化(UQ)的估计在贝叶斯环境中的低维潜空间上执行。我们已经在美国萨凡纳河的一英里接触到美国,测试了我们的反转方法。一旦培训了神经网络(离线阶段),所提出的技术就可以比通常基于线性投影的传统反转方法更快地执行幅度的反转操作级,例如主成分分析(PCA)或主要成分地质统计方法(PCGA)。此外,即使具有稀疏的流速测量,测试也可以估计算法估计良好的精度均匀的浴权。
translated by 谷歌翻译
Kalman滤波器(KF)参数传统上是由噪声估计确定的,因为在KF假设下,当参数对应于噪声协方差时,状态预测误差将最小化。但是,无论假设如何,噪声估计仍然是金标准的 - 即使它不等于错误最小化。我们证明,即使看似简单的问题也可能包括违反多个假设 - 有时甚至很难注意到。我们从理论和经验上表明,即使是轻微的违规行为也可能在很大程度上改变了最佳参数。我们提出了一种基于梯度的方法以及Cholesky参数化,以明确优化状态预测错误。我们在3个不同域中的数十实验中显示出对噪声估计的一致性。最后,我们证明了优化使KF具有LSTM模型的竞争 - 即使在非线性问题中也是如此。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)的最新表现突破,尤其是深度学习的进步(DL),功能强大,易于使用的ML库(例如Scikit-Learn,Tensorflow,Pytorch。),Pytorch。,Pytorch。。核工程师对AI/ML的前所未有的兴趣,并增加了计算能力。对于基于物理学的计算模型,已经广泛研究了验证,验证和不确定性定量(VVUQ),并且已经开发了许多方法。但是,ML模型的VVUQ的研究相对较少,尤其是在核工程中。在这项工作中,我们专注于ML模型的UQ作为ML VVUQ的初步步骤,更具体地说,是Deep Neural Networks(DNNS),因为它们是用于回归和分类任务的最广泛使用的监督ML算法。这项工作旨在量化DNN的预测或近似不确定性,当它们用作昂贵的物理模型的替代模型时。比较了DNN UQ的三种技术,即Monte Carlo辍学(MCD),深层合奏(DE)和贝叶斯神经网络(BNNS)。两个核工程示例用于基准这些方法,(1)使用野牛代码的时间依赖性裂变气体释放数据,以及(2)基于BFBT基准测试的无效分数模拟使用痕量代码。发现这三种方法通常需要不同的DNN体系结构和超参数来优化其性能。 UQ结果还取决于可用培训数据的量和数据的性质。总体而言,所有这三种方法都可以提供对近似不确定性的合理估计。当平均预测接近测试数据时,不确定性通常较小,而BNN方法通常会产生比MCD和DE更大的不确定性。
translated by 谷歌翻译