在时间序列分析中,很少有时间的时间序列分类(几乎没有射击TSC)是一个具有挑战性的问题。当同一类的时间序列在光谱域不完全一致或不同类别的时间序列在光谱域中部分一致时,很难分类。为了解决这个问题,我们提出了一种名为Spectral Edgagation图网络(SPGN)的新方法,以明确建模并传播不同时间序列与图网络之间的光谱关系。据我们所知,SPGN是第一个在不同间隔中使用光谱比较的人,并涉及所有时间序列的光谱传播,该频谱序列与图形网络相比,少量射击TSC。 SPGN首先使用带通滤波器在光谱域中扩展时间序列,以计算时间序列之间的光谱关系。 SPGN配备了图形网络,然后将光谱关系与标签信息集成在一起以进行光谱传播。进一步的研究传达了光谱关系获取和光谱传播之间的双向效应。我们在几乎没有TSC基准的基准上进行了广泛的实验。 SPGN优于最先进的结果,$ 4 \%\ sim 13 \%$。此外,在跨域和跨路设置下,SPGN的价格分别超过$ 12 \%$和$ 9 \%$。
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
本文研究了几种皮肤疾病分类问题。基于至关重要的观察,即皮肤病图像通常存在于一类中的多个子群体(即,一类疾病中图像的外观变化并形成多个不同的子组),我们设计了一种新型的亚群集感知网络,即扫描,以提高准确性以稀有皮肤疾病诊断。由于几次学习的性能很大程度上取决于学习特征编码器的质量,因此指导扫描设计的主要原理是每个类的内在子簇表示学习,以便更好地描述特征分布。具体而言,扫描遵循双分支框架,第一个分支是学习范围的特征以区分不同的皮肤疾病,第二个分支是学习可以有效地将每个班级划分为几个组的特征,以保留子 - 每个类中的聚集结构。为了实现第二个分支的目标,我们提出了一个集群损失,可以通过无监督的聚类学习图像相似性。为了确保每个子集群中的样品来自同一类,我们进一步设计了纯度损失,以完善无监督的聚类结果。我们在两个公共数据集上评估了拟议方法,以进行几次皮肤疾病分类。实验结果验证了我们的框架在SD-198和DERM7PT数据集​​上优于其他最先进方法约为2%至4%。
translated by 谷歌翻译
很少有学习的学习(FSL)旨在学习一个可以轻松适应新颖课程的分类器,只有几个标签的示例,限制数据使这项任务挑战深度学习。基于量子指标的方法已实现了有希望的表现基于图像级的功能。但是,这些全球特征忽略了丰富的本地和结构信息,这些信息在可见的和看不见的类之间都是可以转移和一致的。认知科学的某些研究认为,人类可以识别出具有学识渊博的新颖类。我们希望挖掘出来可以从基础类别转移和判别性表示,并采用它们以识别新的课程。建立情节训练机制,我们提出了一个原始的采矿和推理网络(PMRN),以端到端的方式学习原始感知的表示,以进行度量。基于基于FSL模型。我们首先添加自学辅助任务,迫使功能提取器学习与原始词相对应的电视模式。为了进一步挖掘并产生可转移的原始感知表示形式,我们设计了一个自适应通道组(ACG)模块,以通过增强信息通道图的同时抑制无用的通道图,从而从对象嵌入中合成一组视觉原语。基于学到的原始功能,提出了一个语义相关推理(SCR)模块来捕获它们之间的内部关系。在本文中,我们了解原始词的特定于任务的重要性,并基于特定于任务的注意力功能进行原始级别的度量。广泛的实验表明,我们的方法在六个标准基准下实现了最先进的结果。
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
图形神经网络(GNNS)已被用于解决几次拍摄学习(FSL)问题,并在转换设置下显示出很大的潜力。但是在归纳设置下,现有的基于GNN的方法竞争较差。这是因为它们使用实例GNN作为标签传播/分类模块,其与特征嵌入网络共同学习。这种设计是有问题的,因为分类器需要在嵌入而不快速地适应新任务。为了克服这个问题,本文提出了一种新的混合GNN(HGNN)模型,包括两个GNN,实例GNN和原型GNN。它们代替标签传播,它们用作嵌入适应模块的功能,以便快速适应嵌入到新任务的元学员的功能。重要的是,他们旨在处理FSL中的基本但经常被忽视的挑战,即只有每班少量镜头,任何几次拍摄的分类器都会对差异或可能导致阶层的严重采样镜头敏感分配重叠。 %我们的两个GNNS旨在分别解决这两种类型的差别少量射击,并且在混合GNN模型中利用它们的互补性。广泛的实验表明,我们的HGNN在三个FSL基准上获得了新的最先进。
translated by 谷歌翻译
在元学习框架下设计了许多射门学习方法,这些方法从各种学习任务中学习并推广到新任务。这些元学习方法在从同一分布(I.I.D.观察)中绘制的所有样本中的情况下实现了预期的性能。然而,在现实世界应用中,很少拍摄的学习范式往往遭受数据转移,即,即使在相同的任务中,也可以从各种数据分布中汲取不同任务中的示例。大多数现有的几次拍摄方法不考虑数据班次,因此在数据分布换档时显示降级性能。然而,由于每个任务中的标记样本数量有限的标记样本,因此在几次拍摄学习中解决数据转换问题是不普遍的。针对解决此问题,我们提出了一种新的基于度量的元学习框架,以便在知识图表的帮助下提取任务特定的表示和任务共享表示。因此,任务内的数据偏移可以通过任务共享和特定于任务的表示的组合来组合。拟议的模型是对流行的基准测试和两个构造的新具有挑战性的数据集。评估结果表明了其显着性能。
translated by 谷歌翻译
Few-shot learning aims to fast adapt a deep model from a few examples. While pre-training and meta-training can create deep models powerful for few-shot generalization, we find that pre-training and meta-training focuses respectively on cross-domain transferability and cross-task transferability, which restricts their data efficiency in the entangled settings of domain shift and task shift. We thus propose the Omni-Training framework to seamlessly bridge pre-training and meta-training for data-efficient few-shot learning. Our first contribution is a tri-flow Omni-Net architecture. Besides the joint representation flow, Omni-Net introduces two parallel flows for pre-training and meta-training, responsible for improving domain transferability and task transferability respectively. Omni-Net further coordinates the parallel flows by routing their representations via the joint-flow, enabling knowledge transfer across flows. Our second contribution is the Omni-Loss, which introduces a self-distillation strategy separately on the pre-training and meta-training objectives for boosting knowledge transfer throughout different training stages. Omni-Training is a general framework to accommodate many existing algorithms. Evaluations justify that our single framework consistently and clearly outperforms the individual state-of-the-art methods on both cross-task and cross-domain settings in a variety of classification, regression and reinforcement learning problems.
translated by 谷歌翻译
Few-shot classification aims to recognize unlabeled samples from unseen classes given only few labeled samples. The unseen classes and low-data problem make few-shot classification very challenging. Many existing approaches extracted features from labeled and unlabeled samples independently, as a result, the features are not discriminative enough. In this work, we propose a novel Cross Attention Network to address the challenging problems in few-shot classification. Firstly, Cross Attention Module is introduced to deal with the problem of unseen classes. The module generates cross attention maps for each pair of class feature and query sample feature so as to highlight the target object regions, making the extracted feature more discriminative. Secondly, a transductive inference algorithm is proposed to alleviate the low-data problem, which iteratively utilizes the unlabeled query set to augment the support set, thereby making the class features more representative. Extensive experiments on two benchmarks show our method is a simple, effective and computationally efficient framework and outperforms the state-of-the-arts.
translated by 谷歌翻译
Few-shot classification aims to learn a classifier to recognize unseen classes during training with limited labeled examples. While significant progress has been made, the growing complexity of network designs, meta-learning algorithms, and differences in implementation details make a fair comparison difficult. In this paper, we present 1) a consistent comparative analysis of several representative few-shot classification algorithms, with results showing that deeper backbones significantly reduce the performance differences among methods on datasets with limited domain differences, 2) a modified baseline method that surprisingly achieves competitive performance when compared with the state-of-the-art on both the mini-ImageNet and the CUB datasets, and 3) a new experimental setting for evaluating the cross-domain generalization ability for few-shot classification algorithms. Our results reveal that reducing intra-class variation is an important factor when the feature backbone is shallow, but not as critical when using deeper backbones. In a realistic cross-domain evaluation setting, we show that a baseline method with a standard fine-tuning practice compares favorably against other state-of-the-art few-shot learning algorithms.
translated by 谷歌翻译
少量学习,特别是几秒钟的图像分类,近年来受到了越来越多的关注,并目睹了重大进展。最近的一些研究暗示表明,许多通用技术或“诀窍”,如数据增强,预训练,知识蒸馏和自我监督,可能大大提高了几次学习方法的性能。此外,不同的作品可以采用不同的软件平台,不同的训练计划,不同的骨干架构以及甚至不同的输入图像大小,使得公平的比较困难,从业者与再现性斗争。为了解决这些情况,通过在Pytorch中的同一单个代码库中重新实施17个最新的框架,提出了几次射门学习(Libfewshot)的全面图书馆。此外,基于libfewshot,我们提供多个基准数据集的全面评估,其中包含多个骨干架构,以评估不同培训技巧的常见缺陷和效果。此外,鉴于近期对必要性或未培训机制的必要性怀疑,我们的评估结果表明,特别是当与预训练相结合时,仍然需要这种机制。我们希望我们的工作不仅可以降低初学者的障碍,可以在几次学习上工作,而且还消除了非动力技巧的影响,促进了几枪学习的内在研究。源代码可从https://github.com/rl-vig/libfewshot获取。
translated by 谷歌翻译
The task of Few-shot learning (FSL) aims to transfer the knowledge learned from base categories with sufficient labelled data to novel categories with scarce known information. It is currently an important research question and has great practical values in the real-world applications. Despite extensive previous efforts are made on few-shot learning tasks, we emphasize that most existing methods did not take into account the distributional shift caused by sample selection bias in the FSL scenario. Such a selection bias can induce spurious correlation between the semantic causal features, that are causally and semantically related to the class label, and the other non-causal features. Critically, the former ones should be invariant across changes in distributions, highly related to the classes of interest, and thus well generalizable to novel classes, while the latter ones are not stable to changes in the distribution. To resolve this problem, we propose a novel data augmentation strategy dubbed as PatchMix that can break this spurious dependency by replacing the patch-level information and supervision of the query images with random gallery images from different classes from the query ones. We theoretically show that such an augmentation mechanism, different from existing ones, is able to identify the causal features. To further make these features to be discriminative enough for classification, we propose Correlation-guided Reconstruction (CGR) and Hardness-Aware module for instance discrimination and easier discrimination between similar classes. Moreover, such a framework can be adapted to the unsupervised FSL scenario.
translated by 谷歌翻译
传统的细颗粒图像分类通常依赖于带注释的地面真相的大规模训练样本。但是,某些子类别在实际应用中可能几乎没有可用的样本。在本文中,我们建议使用多频邻域(MFN)和双交叉调制(DCM)提出一个新颖的几弹性细颗粒图像分类网络(FICNET)。采用模块MFN来捕获空间域和频域中的信息。然后,提取自相似性和多频成分以产生多频结构表示。 DCM使用分别考虑全球环境信息和类别之间的微妙关系来调节嵌入过程。针对两个少量任务的三个细粒基准数据集进行的综合实验验证了FICNET与最先进的方法相比具有出色的性能。特别是,在两个数据集“ Caltech-UCSD鸟”和“ Stanford Cars”上进行的实验分别可以获得分类精度93.17 \%和95.36 \%。它们甚至高于一般的细粒图像分类方法可以实现的。
translated by 谷歌翻译
Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (``areas'') to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere's center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot learning tasks across NLP and CV and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.
translated by 谷歌翻译
This paper introduces a new few-shot learning pipeline that casts relevance ranking for image retrieval as binary ranking relation classification. In comparison to image classification, ranking relation classification is sample efficient and domain agnostic. Besides, it provides a new perspective on few-shot learning and is complementary to state-of-the-art methods. The core component of our deep neural network is a simple MLP, which takes as input an image triplet encoded as the difference between two vector-Kronecker products, and outputs a binary relevance ranking order. The proposed RankMLP can be built on top of any state-of-the-art feature extractors, and our entire deep neural network is called the ranking deep neural network, or RankDNN. Meanwhile, RankDNN can be flexibly fused with other post-processing methods. During the meta test, RankDNN ranks support images according to their similarity with the query samples, and each query sample is assigned the class label of its nearest neighbor. Experiments demonstrate that RankDNN can effectively improve the performance of its baselines based on a variety of backbones and it outperforms previous state-of-the-art algorithms on multiple few-shot learning benchmarks, including miniImageNet, tieredImageNet, Caltech-UCSD Birds, and CIFAR-FS. Furthermore, experiments on the cross-domain challenge demonstrate the superior transferability of RankDNN.The code is available at: https://github.com/guoqianyu-alberta/RankDNN.
translated by 谷歌翻译
模型不合时宜的元学习(MAML)是一种著名的少数学习方法,它启发了许多后续工作,例如Anil和Boil。但是,作为一种归纳方法,MAML无法完全利用查询集的信息,从而限制了其获得更高通用性的潜力。为了解决这个问题,我们提出了一种简单而有效的方法,该方法可以适应性地生成伪标记,并可以提高MAML家族的性能。所提出的方法,被称为生成伪标签的MAML(GP-MAML),GP-Anil和GP-Boil,是查询的杠杆统计数据,以提高新任务的性能。具体而言,我们自适应地添加伪标签并从查询集中挑选样品,然后使用挑选的查询样品和支持集对模型进行重新训练。 GP系列还可以使用伪查询集中的信息在元测试过程中重新培训网络。尽管某些转导方法(例如跨传播网络(TPN))努力实现这一目标。
translated by 谷歌翻译
图形广泛用于建模数据的关系结构,并且图形机器学习(ML)的研究具有广泛的应用,从分子图中的药物设计到社交网络中的友谊建议。图形ML的流行方法通常需要大量的标记实例来实现令人满意的结果,这在现实世界中通常是不可行的,因为在图形上标记了新出现的概念的数据(例如,在图形上的新分类)是有限的。尽管已将元学习应用于不同的几个图形学习问题,但大多数现有的努力主要假设所有所见类别的数据都是金标记的,而当这些方法弱标记时,这些方法可能会失去疗效严重的标签噪声。因此,我们旨在研究一个新的问题,即弱监督图元学习,以改善知识转移的模型鲁棒性。为了实现这一目标,我们提出了一个新的图形学习框架 - 本文中的图形幻觉网络(Meta-GHN)。基于一种新的鲁棒性增强的情节训练,元研究将从弱标记的数据中幻觉清洁节点表示,并提取高度可转移的元知识,这使该模型能够快速适应不见了的任务,几乎没有标记的实例。广泛的实验表明,元基因与现有图形学习研究的优越性有关弱监督的少数弹性分类的任务。
translated by 谷歌翻译
少量学习是一个基本和挑战性的问题,因为它需要识别只有几个例子的新型类别。识别对象具有多个变体,可以定位图像中的任何位置。直接将查询图像与示例图像进行比较无法处理内容未对准。比较的表示和度量是至关重要的,但由于在几次拍摄学习中的样本的稀缺和广泛变化而挑战。在本文中,我们提出了一种新颖的语义对齐模型来比较关系,这是对内容未对准的强大。我们建议为现有的几次射门学习框架添加两个关键成分,以获得更好的特征和度量学习能力。首先,我们介绍了语义对齐损失,以对准属于同一类别的样本的功能的关系统计。其次,引入了本地和全局互动信息,允许在图像中的结构位置包含本地一致和类别共享信息的表示。第三,我们通过考虑每个流的同性恋的不确定性来介绍一个原则的方法来称量多重损失功能。我们对几个几次拍摄的学习数据集进行了广泛的实验。实验结果表明,该方法能够比较与语义对准策略的关系,实现最先进的性能。
translated by 谷歌翻译
本文解决了几秒钟学习问题,旨在从几个例子中学习新的视觉概念。在几次拍摄分类中的常见问题设置假设在获取数据标签中的随机采样策略,其在实际应用中效率低下。在这项工作中,我们介绍了一个新的预算感知几秒钟学习问题,不仅旨在学习新的对象类别,还需要选择信息实例来注释以实现数据效率。我们为我们的预算感知几秒钟学习任务开发了一个元学习策略,该任务共同了解基于图形卷积网络(GCN)和基于示例的少量拍摄分类器的新型数据选择策略。我们的选择策略通过图形消息传递计算每个未标记数据的上下文敏感表示,然后用于预测顺序选择的信息性分数。我们在迷你想象网,分层 - 想象项目和omniglot数据集上进行广泛的实验验证我们的方法。结果表明,我们的几次学习策略优于一个相当大的边缘,这表明了我们的方法的功效。
translated by 谷歌翻译
很少有射击学习(FSL)旨在使用有限标记的示例生成分类器。许多现有的作品采用了元学习方法,构建了一些可以从几个示例中学习以生成分类器的学习者。通常,几次学习者是通过依次对多个几次射击任务进行采样并优化几杆学习者在为这些任务生成分类器时的性能来构建或进行元训练的。性能是通过结果分类器对这些任务的测试(即查询)示例进行分类的程度来衡量的。在本文中,我们指出了这种方法的两个潜在弱点。首先,采样的查询示例可能无法提供足够的监督来进行元训练少数学习者。其次,元学习的有效性随着射击数量的增加而急剧下降。为了解决这些问题,我们为少数学习者提出了一个新颖的元训练目标,这是为了鼓励少数学习者生成像强大分类器一样执行的分类器。具体而言,我们将每个采样的几个弹药任务与强大的分类器相关联,该分类器接受了充分的标记示例。强大的分类器可以看作是目标分类器,我们希望在几乎没有示例的情况下生成的几个学习者,我们使用强大的分类器来监督少数射击学习者。我们提出了一种构建强分类器的有效方法,使我们提出的目标成为现有基于元学习的FSL方法的易于插入的术语。我们与许多代表性的元学习方法相结合验证了我们的方法,Lastshot。在几个基准数据集中,我们的方法可导致各种任务的显着改进。更重要的是,通过我们的方法,基于元学习的FSL方法可以在不同数量的镜头上胜过基于非Meta学习的方法。
translated by 谷歌翻译