在元学习框架下设计了许多射门学习方法,这些方法从各种学习任务中学习并推广到新任务。这些元学习方法在从同一分布(I.I.D.观察)中绘制的所有样本中的情况下实现了预期的性能。然而,在现实世界应用中,很少拍摄的学习范式往往遭受数据转移,即,即使在相同的任务中,也可以从各种数据分布中汲取不同任务中的示例。大多数现有的几次拍摄方法不考虑数据班次,因此在数据分布换档时显示降级性能。然而,由于每个任务中的标记样本数量有限的标记样本,因此在几次拍摄学习中解决数据转换问题是不普遍的。针对解决此问题,我们提出了一种新的基于度量的元学习框架,以便在知识图表的帮助下提取任务特定的表示和任务共享表示。因此,任务内的数据偏移可以通过任务共享和特定于任务的表示的组合来组合。拟议的模型是对流行的基准测试和两个构造的新具有挑战性的数据集。评估结果表明了其显着性能。
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
很少有射击学习(FSL)旨在通过利用基本数据集的先验知识来识别只有几个支持样本的新奇查询。在本文中,我们考虑了FSL中的域移位问题,并旨在解决支持集和查询集之间的域间隙。不同于以前考虑基础和新颖类之间的域移位的跨域FSL工作(CD-FSL),新问题称为跨域跨集FSL(CDSC-FSL),不仅需要很少的学习者适应新的领域,但也要在每个新颖类中的不同领域之间保持一致。为此,我们提出了一种新颖的方法,即Stabpa,学习原型紧凑和跨域对准表示,以便可以同时解决域的转移和很少的学习学习。我们对分别从域和办公室数据集构建的两个新的CDCS-FSL基准进行评估。值得注意的是,我们的方法的表现优于多个详细的基线,例如,在域内,将5-shot精度提高了6.0点。代码可从https://github.com/wentaochen0813/cdcs-fsl获得
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
图形神经网络(GNNS)已被用于解决几次拍摄学习(FSL)问题,并在转换设置下显示出很大的潜力。但是在归纳设置下,现有的基于GNN的方法竞争较差。这是因为它们使用实例GNN作为标签传播/分类模块,其与特征嵌入网络共同学习。这种设计是有问题的,因为分类器需要在嵌入而不快速地适应新任务。为了克服这个问题,本文提出了一种新的混合GNN(HGNN)模型,包括两个GNN,实例GNN和原型GNN。它们代替标签传播,它们用作嵌入适应模块的功能,以便快速适应嵌入到新任务的元学员的功能。重要的是,他们旨在处理FSL中的基本但经常被忽视的挑战,即只有每班少量镜头,任何几次拍摄的分类器都会对差异或可能导致阶层的严重采样镜头敏感分配重叠。 %我们的两个GNNS旨在分别解决这两种类型的差别少量射击,并且在混合GNN模型中利用它们的互补性。广泛的实验表明,我们的HGNN在三个FSL基准上获得了新的最先进。
translated by 谷歌翻译
Few-shot learning aims to fast adapt a deep model from a few examples. While pre-training and meta-training can create deep models powerful for few-shot generalization, we find that pre-training and meta-training focuses respectively on cross-domain transferability and cross-task transferability, which restricts their data efficiency in the entangled settings of domain shift and task shift. We thus propose the Omni-Training framework to seamlessly bridge pre-training and meta-training for data-efficient few-shot learning. Our first contribution is a tri-flow Omni-Net architecture. Besides the joint representation flow, Omni-Net introduces two parallel flows for pre-training and meta-training, responsible for improving domain transferability and task transferability respectively. Omni-Net further coordinates the parallel flows by routing their representations via the joint-flow, enabling knowledge transfer across flows. Our second contribution is the Omni-Loss, which introduces a self-distillation strategy separately on the pre-training and meta-training objectives for boosting knowledge transfer throughout different training stages. Omni-Training is a general framework to accommodate many existing algorithms. Evaluations justify that our single framework consistently and clearly outperforms the individual state-of-the-art methods on both cross-task and cross-domain settings in a variety of classification, regression and reinforcement learning problems.
translated by 谷歌翻译
Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (``areas'') to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere's center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot learning tasks across NLP and CV and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.
translated by 谷歌翻译
Zero-Shot Learning has been a highlighted research topic in both vision and language areas. Recently, most existing methods adopt structured knowledge information to model explicit correlations among categories and use deep graph convolutional network to propagate information between different categories. However, it is difficult to add new categories to existing structured knowledge graph, and deep graph convolutional network suffers from over-smoothing problem. In this paper, we provide a new semantic enhanced knowledge graph that contains both expert knowledge and categories semantic correlation. Our semantic enhanced knowledge graph can further enhance the correlations among categories and make it easy to absorb new categories. To propagate information on the knowledge graph, we propose a novel Residual Graph Convolutional Network (ResGCN), which can effectively alleviate the problem of over-smoothing. Experiments conducted on the widely used large-scale ImageNet-21K dataset and AWA2 dataset show the effectiveness of our method, and establish a new state-of-the-art on zero-shot learning. Moreover, our results on the large-scale ImageNet-21K with various feature extraction networks show that our method has better generalization and robustness.
translated by 谷歌翻译
Learning with limited data is a key challenge for visual recognition. Many few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them leads to the target task. In this paper, we propose a novel approach to adapt the instance embeddings to the target classification task with a set-to-set function, yielding embeddings that are task-specific and are discriminative. We empirically investigated various instantiations of such set-to-set functions and observed the Transformer is most effective -as it naturally satisfies key properties of our desired model. We denote this model as FEAT (few-shot embedding adaptation w/ Transformer) and validate it on both the standard few-shot classification benchmark and four extended few-shot learning settings with essential use cases, i.e., cross-domain, transductive, generalized few-shot learning, and low-shot learning. It archived consistent improvements over baseline models as well as previous methods, and established the new stateof-the-art results on two benchmarks.
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
神经记忆能够快速适应新任务,只需几个训练样本。现有的内存模型仅从单个最后一层存储特征,在培训和测试分布之间存在域之间的域移位不概括。我们不是依赖扁平内存,我们提出了一种在不同语义层面存储特征的分层替代方案。我们介绍了分层原型模型,其中每个级别的原型从分层内存中获取相应的信息。如果域移位情况如此需要,该模型能够灵活地依赖不同语义级别的功能。我们通过新派生的分层变分推理框架来学习模型,其中分层内存和原型是共同优化的。为了探索和利用不同语义层面的重要性,我们进一步建议以数据驱动方式学习与每个级别的原型相关联的权重,这使得模型能够自适应地选择最概括的功能。我们进行彻底的消融研究,以证明我们模型中每个组件的有效性。在跨领域和传统少量拍摄分类上的跨领域和竞争性能的新的最先进的性能进一步证实了等级变分记忆的益处。
translated by 谷歌翻译
图形广泛用于建模数据的关系结构,并且图形机器学习(ML)的研究具有广泛的应用,从分子图中的药物设计到社交网络中的友谊建议。图形ML的流行方法通常需要大量的标记实例来实现令人满意的结果,这在现实世界中通常是不可行的,因为在图形上标记了新出现的概念的数据(例如,在图形上的新分类)是有限的。尽管已将元学习应用于不同的几个图形学习问题,但大多数现有的努力主要假设所有所见类别的数据都是金标记的,而当这些方法弱标记时,这些方法可能会失去疗效严重的标签噪声。因此,我们旨在研究一个新的问题,即弱监督图元学习,以改善知识转移的模型鲁棒性。为了实现这一目标,我们提出了一个新的图形学习框架 - 本文中的图形幻觉网络(Meta-GHN)。基于一种新的鲁棒性增强的情节训练,元研究将从弱标记的数据中幻觉清洁节点表示,并提取高度可转移的元知识,这使该模型能够快速适应不见了的任务,几乎没有标记的实例。广泛的实验表明,元基因与现有图形学习研究的优越性有关弱监督的少数弹性分类的任务。
translated by 谷歌翻译
逐步学习新课程的能力对于所有现实世界的人工智能系统至关重要。像社交媒体,推荐系统,电子商务平台等的大部分高冲击应用都可以由图形模型表示。在本文中,我们调查了挑战但实际问题,图表几次拍摄的类增量(图形FCL)问题,其中图形模型是任务,以对新遇到的类和以前学习的类进行分类。为此目的,我们通过从基类循环地采样任务来提出图形伪增量学习范例,以便为我们的模型产生任意数量的培训集,以练习增量学习技能。此外,我们设计了一种基于分层的图形元学习框架,Hag-Meta。我们介绍了一个任务敏感的常规程序,从任务级关注和节点类原型计算,以缓解到新颖或基本类上的过度拟合。为了采用拓扑知识,我们添加了一个节点级注意模块来调整原型表示。我们的模型不仅达到了旧知识整合的更大稳定性,而且还可以获得对具有非常有限的数据样本的新知识的有利适应性。在三个现实世界数据集上进行广泛的实验,包括亚马逊服装,Reddit和DBLP,表明我们的框架与基线和其他相关最先进的方法相比,展示了显着的优势。
translated by 谷歌翻译
图表分类是一种非常有影响力的任务,在多数世界应用中起着至关重要的作用,例如分子性质预测和蛋白质函数预测。以有限标记的图表处理新课程,几次拍摄图形分类已成为一座桥梁现有图分类解决方案与实际使用。这项工作探讨了基于度量的元学习的潜力,用于解决少量图形分类。我们突出了考虑解决方案结构特征的重要性,并提出了一种明确考虑全球结构的新框架和输入图的局部结构。在两个数据集,Chembl和三角形上测试了名为SMF-GIN的GIN的实施,其中广泛的实验验证了所提出的方法的有效性。 ChemBl构造成填补缺乏几次拍摄图形分类评估的大规模基准的差距,与SMF-GIN的实施一起释放:https://github.com/jiangshunyu/smf-ing。
translated by 谷歌翻译
很少有射击学习(FSL)由于其在模型训练中的能力而无需过多的数据而引起了计算机视觉的越来越多的关注。 FSL具有挑战性,因为培训和测试类别(基础与新颖集)可能会在很大程度上多样化。传统的基于转移的解决方案旨在将从大型培训集中学到的知识转移到目标测试集中是有限的,因为任务分配转移的关键不利影响没有充分解决。在本文中,我们通过结合度量学习和通道注意的概念扩展了基于转移方法的解决方案。为了更好地利用特征主链提取的特征表示,我们提出了特定于类的通道注意(CSCA)模块,该模块通过分配每个类别的CSCA权重向量来学会突出显示每个类中的判别通道。与旨在学习全球班级功能的一般注意力模块不同,CSCA模块旨在通过非常有效的计算来学习本地和特定的特定功能。我们评估了CSCA模块在标准基准测试中的性能,包括Miniimagenet,Cifar-imagenet,Cifar-FS和Cub-200-200-2011。实验在电感和/跨域设置中进行。我们取得了新的最新结果。
translated by 谷歌翻译
节点分类在各种图形挖掘任务中至关重要。在实践中,实际图通常遵循长尾分布,其中大量类仅由有限的标记节点组成。尽管图神经网络(GNN)在节点分类方面取得了显着改善,但在这种情况下,它们的性能大大降低。主要原因可以归因于由于元任务中不同节点/类分布引起的任务差异(即节点级别和类级别的方差)引起的任务差异,因此元素训练和元检验之间存在巨大的概括差距。因此,为了有效地减轻任务差异的影响,我们在少数弹出的学习设置下提出了一个任务自适应的节点分类框架。具体而言,我们首先在具有丰富标记节点的类中积累了元知识。然后,我们通过提出的任务自适应模块将这些知识转移到具有有限标记的节点的类别中。特别是,为了适应元任务之间的不同节点/类分布,我们建议三个基本模块以执行\ emph {node-level},\ emph {class-level}和\ emph {task-emph {task-level}适应元任务分别。这样,我们的框架可以对不同的元任务进行适应,从而提高元测试任务上的模型概括性能。在四个普遍的节点分类数据集上进行了广泛的实验,证明了我们的框架优于最先进的基线。我们的代码可在https://github.com/songw-sw/tent上提供。
translated by 谷歌翻译
模型不可知的元学习算法旨在从几个观察到的任务中推断出先验,然后可以使用这些任务来适应新任务,但很少有示例。鉴于在现有基准中产生的任务的固有多样性,最近的方法使用单独的可学习结构,例如层次结构或图形,以实现对先验的特定任务适应。尽管这些方法产生了明显更好的元学习者,但我们的目标是在异质任务分配包含具有挑战性的分布变化和语义差异时提高其性能。为此,我们介绍了CAML(对比知识增强的元学习),这是一种新颖的方法,用于知识增强的几次学习,它演变了知识图以有效地编码历史经验,并采用了对比性的蒸馏策略,以利用编码的知识来为基础学习者的任务感知调制。使用标准基准测试,我们在不同的几次学习方案中评估CAML的性能。除了标准的少量任务适应外,我们还考虑了我们的经验研究中更具挑战性的多域任务适应和少数数据集泛化设置。我们的结果表明,CAML始终胜过最知名的方法,并实现了改善的概括。
translated by 谷歌翻译
从一个非常少数标记的样品中学习新颖的课程引起了机器学习区域的越来越高。最近关于基于元学习或转移学习的基于范例的研究表明,良好特征空间的获取信息可以是在几次拍摄任务上实现有利性能的有效解决方案。在本文中,我们提出了一种简单但有效的范式,该范式解耦了学习特征表示和分类器的任务,并且只能通过典型的传送学习培训策略从基类嵌入体系结构的特征。为了在每个类别内保持跨基地和新类别和辨别能力的泛化能力,我们提出了一种双路径特征学习方案,其有效地结合了与对比特征结构的结构相似性。以这种方式,内部级别对齐和级别的均匀性可以很好地平衡,并且导致性能提高。三个流行基准测试的实验表明,当与简单的基于原型的分类器结合起来时,我们的方法仍然可以在电感或转换推理设置中的标准和广义的几次射击问题达到有希望的结果。
translated by 谷歌翻译
在过去的几年里,几年枪支学习(FSL)引起了极大的关注,以最大限度地减少标有标记的训练示例的依赖。FSL中固有的困难是处理每个课程的培训样本太少的含糊不清的歧义。为了在FSL中解决这一基本挑战,我们的目标是培训可以利用关于新颖类别的先前语义知识来引导分类器合成过程的元学习模型。特别是,我们提出了语义调节的特征注意力和样本注意机制,估计表示尺寸和培训实例的重要性。我们还研究了FSL的样本噪声问题,以便在更现实和不完美的环境中利用Meta-Meverys。我们的实验结果展示了所提出的语义FSL模型的有效性,而没有样品噪声。
translated by 谷歌翻译
We propose KGTN-ens, a framework extending the recent Knowledge Graph Transfer Network (KGTN) in order to incorporate multiple knowledge graph embeddings at a small cost. We evaluate it with different combinations of embeddings in a few-shot image classification task. We also construct a new knowledge source - Wikidata embeddings - and evaluate it with KGTN and KGTN-ens. Our approach outperforms KGTN in terms of the top-5 accuracy on the ImageNet-FS dataset for the majority of tested settings.
translated by 谷歌翻译