Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (``areas'') to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere's center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot learning tasks across NLP and CV and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
Few-shot relation extraction (FSRE) aims at recognizing unseen relations by learning with merely a handful of annotated instances. To generalize to new relations more effectively, this paper proposes a novel pipeline for the FSRE task based on queRy-information guided Attention and adaptive Prototype fuSion, namely RAPS. Specifically, RAPS first derives the relation prototype by the query-information guided attention module, which exploits rich interactive information between the support instances and the query instances, in order to obtain more accurate initial prototype representations. Then RAPS elaborately combines the derived initial prototype with the relation information by the adaptive prototype fusion mechanism to get the integrated prototype for both train and prediction. Experiments on the benchmark dataset FewRel 1.0 show a significant improvement of our method against state-of-the-art methods.
translated by 谷歌翻译
几个名称的实体识别(NER)使我们能够使用很少的标记示例为新域构建一个NER系统。但是,该任务的现有原型网络具有大致估计的标签依赖性和紧密分布的原型,因此经常导致错误分类。为了解决上述问题,我们提出了EP-NET,这是一个实体级原型网络,通过分散分布的原型增强。EP-NET构建实体级原型,并认为文本跨度为候选实体,因此它不再需要标签依赖性。此外,EP-NET从头开始训练原型,以分散分配它们,并使用空间投影将跨度与嵌入空间中的原型对齐。两项评估任务和少量网络设置的实验结果表明,EP-NET在整体性能方面始终优于先前的强大模型。广泛的分析进一步验证了EP-NET的有效性。
translated by 谷歌翻译
Learning with limited data is a key challenge for visual recognition. Many few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them leads to the target task. In this paper, we propose a novel approach to adapt the instance embeddings to the target classification task with a set-to-set function, yielding embeddings that are task-specific and are discriminative. We empirically investigated various instantiations of such set-to-set functions and observed the Transformer is most effective -as it naturally satisfies key properties of our desired model. We denote this model as FEAT (few-shot embedding adaptation w/ Transformer) and validate it on both the standard few-shot classification benchmark and four extended few-shot learning settings with essential use cases, i.e., cross-domain, transductive, generalized few-shot learning, and low-shot learning. It archived consistent improvements over baseline models as well as previous methods, and established the new stateof-the-art results on two benchmarks.
translated by 谷歌翻译
在新课程训练时,几乎没有射击学习(FSL)方法通常假设具有准确标记的样品的清洁支持集。这个假设通常可能是不现实的:支持集,无论多么小,仍然可能包括标签错误的样本。因此,对标签噪声的鲁棒性对于FSL方法是实用的,但是这个问题令人惊讶地在很大程度上没有探索。为了解决FSL设置中标签错误的样品,我们做出了一些技术贡献。 (1)我们提供了简单而有效的特征聚合方法,改善了流行的FSL技术Protonet使用的原型。 (2)我们描述了一种嘈杂的噪声学习的新型变压器模型(TRANFS)。 TRANFS利用变压器的注意机制称重标记为错误的样品。 (3)最后,我们对迷你胶原和tieredimagenet的嘈杂版本进行了广泛的测试。我们的结果表明,TRANFS与清洁支持集的领先FSL方法相对应,但到目前为止,在存在标签噪声的情况下,它们的表现优于它们。
translated by 谷歌翻译
It has been experimentally demonstrated that humans are able to learn in a manner that allows them to make predictions on categories for which they have not seen any examples (Malaviya et al., 2022). Sucholutsky and Schonlau (2020) have recently presented a machine learning approach that aims to do the same. They utilise synthetically generated data and demonstrate that it is possible to achieve sub-linear scaling and develop models that can learn to recognise N classes from M training samples where M is less than N - aka less-than-one shot learning. Their method was, however, defined for univariate or simple multivariate data (Sucholutsky et al., 2021). We extend it to work on large, high-dimensional and real-world datasets and empirically validate it in this new and challenging setting. We apply this method to learn previously unseen NLP tasks from very few examples (4, 8 or 16). We first generate compact, sophisticated less-than-one shot representations called soft-label prototypes which are fitted on training data, capturing the distribution of different classes across the input domain space. We then use a modified k-Nearest Neighbours classifier to demonstrate that soft-label prototypes can classify data competitively, even outperforming much more computationally complex few-shot learning methods.
translated by 谷歌翻译
We propose prototypical networks for the problem of few-shot classification, where a classifier must generalize to new classes not seen in the training set, given only a small number of examples of each new class. Prototypical networks learn a metric space in which classification can be performed by computing distances to prototype representations of each class. Compared to recent approaches for few-shot learning, they reflect a simpler inductive bias that is beneficial in this limited-data regime, and achieve excellent results. We provide an analysis showing that some simple design decisions can yield substantial improvements over recent approaches involving complicated architectural choices and meta-learning. We further extend prototypical networks to zero-shot learning and achieve state-of-theart results on the CU-Birds dataset.
translated by 谷歌翻译
从一个非常少数标记的样品中学习新颖的课程引起了机器学习区域的越来越高。最近关于基于元学习或转移学习的基于范例的研究表明,良好特征空间的获取信息可以是在几次拍摄任务上实现有利性能的有效解决方案。在本文中,我们提出了一种简单但有效的范式,该范式解耦了学习特征表示和分类器的任务,并且只能通过典型的传送学习培训策略从基类嵌入体系结构的特征。为了在每个类别内保持跨基地和新类别和辨别能力的泛化能力,我们提出了一种双路径特征学习方案,其有效地结合了与对比特征结构的结构相似性。以这种方式,内部级别对齐和级别的均匀性可以很好地平衡,并且导致性能提高。三个流行基准测试的实验表明,当与简单的基于原型的分类器结合起来时,我们的方法仍然可以在电感或转换推理设置中的标准和广义的几次射击问题达到有希望的结果。
translated by 谷歌翻译
Incorporating large-scale pre-trained models with the prototypical neural networks is a de-facto paradigm in few-shot named entity recognition. Existing methods, unfortunately, are not aware of the fact that embeddings from pre-trained models contain a prominently large amount of information regarding word frequencies, biasing prototypical neural networks against learning word entities. This discrepancy constrains the two models' synergy. Thus, we propose a one-line-code normalization method to reconcile such a mismatch with empirical and theoretical grounds. Our experiments based on nine benchmark datasets show the superiority of our method over the counterpart models and are comparable to the state-of-the-art methods. In addition to the model enhancement, our work also provides an analytical viewpoint for addressing the general problems in few-shot name entity recognition or other tasks that rely on pre-trained models or prototypical neural networks.
translated by 谷歌翻译
我们提出了弗雷多(Fredo),几张文档级别的关系提取(FSDLRE)基准。与基于句子级别的关系提取语料库建立的现有基准相反,我们认为文档级的语料库提供了更多的现实主义,尤其是关于无原始的(nota)分布。因此,我们建议一组FSDLRE任务,并基于两个现有的监督学习数据集(DOCRED和SCIERC)构建基准测试。我们将最先进的句子级方法MNAV调整为文档级别,并进一步开发它以改善域的适应性。我们发现FSDLRE是一个充满挑战的环境,具有有趣的新特征,例如从支持集中进行nota实例的能力。数据,代码和训练的模型可在线获得(https://github.com/nicpopovic/fredo)。
translated by 谷歌翻译
少量学习,特别是几秒钟的图像分类,近年来受到了越来越多的关注,并目睹了重大进展。最近的一些研究暗示表明,许多通用技术或“诀窍”,如数据增强,预训练,知识蒸馏和自我监督,可能大大提高了几次学习方法的性能。此外,不同的作品可以采用不同的软件平台,不同的训练计划,不同的骨干架构以及甚至不同的输入图像大小,使得公平的比较困难,从业者与再现性斗争。为了解决这些情况,通过在Pytorch中的同一单个代码库中重新实施17个最新的框架,提出了几次射门学习(Libfewshot)的全面图书馆。此外,基于libfewshot,我们提供多个基准数据集的全面评估,其中包含多个骨干架构,以评估不同培训技巧的常见缺陷和效果。此外,鉴于近期对必要性或未培训机制的必要性怀疑,我们的评估结果表明,特别是当与预训练相结合时,仍然需要这种机制。我们希望我们的工作不仅可以降低初学者的障碍,可以在几次学习上工作,而且还消除了非动力技巧的影响,促进了几枪学习的内在研究。源代码可从https://github.com/rl-vig/libfewshot获取。
translated by 谷歌翻译
从有限的数据学习是一个具有挑战性的任务,因为数据的稀缺导致训练型模型的较差。经典的全局汇总表示可能会失去有用的本地信息。最近,许多射击学习方法通​​过使用深度描述符和学习像素级度量来解决这一挑战。但是,使用深描述符作为特征表示可能丢失图像的上下文信息。这些方法中的大多数方法独立地处理支持集中的每个类,这不能充分利用鉴别性信息和特定于特定的嵌入。在本文中,我们提出了一种名为稀疏空间变压器(SSFormers)的新型变压器的神经网络架构,可以找到任务相关的功能并抑制任务无关的功能。具体地,我们首先将每个输入图像划分为不同大小的几个图像斑块,以获得密集的局部特征。这些功能在表达本地信息时保留上下文信息。然后,提出了一种稀疏的空间变压器层以在查询图像和整个支持集之间找到空间对应关系,以选择任务相关的图像斑块并抑制任务 - 无关的图像斑块。最后,我们建议使用图像补丁匹配模块来计算密集的本地表示之间的距离,从而确定查询图像属于支持集中的哪个类别。广泛的少量学习基准测试表明,我们的方法实现了最先进的性能。
translated by 谷歌翻译
很少有射击学习(FSL)由于其在模型训练中的能力而无需过多的数据而引起了计算机视觉的越来越多的关注。 FSL具有挑战性,因为培训和测试类别(基础与新颖集)可能会在很大程度上多样化。传统的基于转移的解决方案旨在将从大型培训集中学到的知识转移到目标测试集中是有限的,因为任务分配转移的关键不利影响没有充分解决。在本文中,我们通过结合度量学习和通道注意的概念扩展了基于转移方法的解决方案。为了更好地利用特征主链提取的特征表示,我们提出了特定于类的通道注意(CSCA)模块,该模块通过分配每个类别的CSCA权重向量来学会突出显示每个类中的判别通道。与旨在学习全球班级功能的一般注意力模块不同,CSCA模块旨在通过非常有效的计算来学习本地和特定的特定功能。我们评估了CSCA模块在标准基准测试中的性能,包括Miniimagenet,Cifar-imagenet,Cifar-FS和Cub-200-200-2011。实验在电感和/跨域设置中进行。我们取得了新的最新结果。
translated by 谷歌翻译
在元学习框架下设计了许多射门学习方法,这些方法从各种学习任务中学习并推广到新任务。这些元学习方法在从同一分布(I.I.D.观察)中绘制的所有样本中的情况下实现了预期的性能。然而,在现实世界应用中,很少拍摄的学习范式往往遭受数据转移,即,即使在相同的任务中,也可以从各种数据分布中汲取不同任务中的示例。大多数现有的几次拍摄方法不考虑数据班次,因此在数据分布换档时显示降级性能。然而,由于每个任务中的标记样本数量有限的标记样本,因此在几次拍摄学习中解决数据转换问题是不普遍的。针对解决此问题,我们提出了一种新的基于度量的元学习框架,以便在知识图表的帮助下提取任务特定的表示和任务共享表示。因此,任务内的数据偏移可以通过任务共享和特定于任务的表示的组合来组合。拟议的模型是对流行的基准测试和两个构造的新具有挑战性的数据集。评估结果表明了其显着性能。
translated by 谷歌翻译
图形神经网络(GNNS)已被用于解决几次拍摄学习(FSL)问题,并在转换设置下显示出很大的潜力。但是在归纳设置下,现有的基于GNN的方法竞争较差。这是因为它们使用实例GNN作为标签传播/分类模块,其与特征嵌入网络共同学习。这种设计是有问题的,因为分类器需要在嵌入而不快速地适应新任务。为了克服这个问题,本文提出了一种新的混合GNN(HGNN)模型,包括两个GNN,实例GNN和原型GNN。它们代替标签传播,它们用作嵌入适应模块的功能,以便快速适应嵌入到新任务的元学员的功能。重要的是,他们旨在处理FSL中的基本但经常被忽视的挑战,即只有每班少量镜头,任何几次拍摄的分类器都会对差异或可能导致阶层的严重采样镜头敏感分配重叠。 %我们的两个GNNS旨在分别解决这两种类型的差别少量射击,并且在混合GNN模型中利用它们的互补性。广泛的实验表明,我们的HGNN在三个FSL基准上获得了新的最先进。
translated by 谷歌翻译
少量学习(FSL)是一个具有挑战性的任务,\ emph {i.e.},如何用少数例子识别新颖的类?基于预先训练的方法通过预先训练特征提取器,然后通过具有基于均值的原型的余弦最近邻分类来预测新颖类来有效地解决问题。然而,由于数据稀缺,通常的平均原型通常偏置。在本文中,我们试图通过将原型偏差视为原型优化问题来减少原型偏差。为此,我们提出了一种新颖的基于元学习的原型优化框架来纠正原型,\ emph {i.},引入元优化器以优化原型。虽然现有的元优化器也可以适应我们的框架,但它们都忽略了一个关键的梯度偏置问题,\ emph {i.},均值的梯度估计也偏置在稀疏数据上。为了解决这个问题,我们将梯度及其流量视为元知识,然后提出一种新的神经常规差分方程(ODE)基础的元优化器,以抛光原型,称为Metanode。在此元优化器中,我们首先将基于平均原型的原型视图为初始原型,然后将原型优化的过程模拟为神经竞争指定的连续时间动态。仔细设计梯度流动推理网络,学习估计原型动态的连续梯度流。最后,通过求解神经焦点,可以获得最佳原型。对Miniimagenet,Tieredimagenet和Cub-200-2011的广泛实验显示了我们方法的有效性。
translated by 谷歌翻译
如今,基于变压器的模型逐渐成为人工智能先驱的默认选择。即使在几个镜头的情况下,这些模型也会显示出优势。在本文中,我们重新审视了经典方法,并提出了一种新的几次替代方法。具体而言,我们研究了几个镜头的单级问题,该问题实际上以已知样本为参考来检测未知实例是否属于同一类。可以从序列匹配的角度研究此问题。结果表明,使用元学习,经典序列匹配方法,即比较聚集,显着优于变压器。经典方法所需的培训成本要少得多。此外,我们在简单的微调和元学习下进行两种序列匹配方法之间进行了经验比较。元学习导致变压器模型的特征具有高相关尺寸。原因与变压器模型的层和头数密切相关。实验代码和数据可从https://github.com/hmt2014/fewone获得
translated by 谷歌翻译
神经记忆能够快速适应新任务,只需几个训练样本。现有的内存模型仅从单个最后一层存储特征,在培训和测试分布之间存在域之间的域移位不概括。我们不是依赖扁平内存,我们提出了一种在不同语义层面存储特征的分层替代方案。我们介绍了分层原型模型,其中每个级别的原型从分层内存中获取相应的信息。如果域移位情况如此需要,该模型能够灵活地依赖不同语义级别的功能。我们通过新派生的分层变分推理框架来学习模型,其中分层内存和原型是共同优化的。为了探索和利用不同语义层面的重要性,我们进一步建议以数据驱动方式学习与每个级别的原型相关联的权重,这使得模型能够自适应地选择最概括的功能。我们进行彻底的消融研究,以证明我们模型中每个组件的有效性。在跨领域和传统少量拍摄分类上的跨领域和竞争性能的新的最先进的性能进一步证实了等级变分记忆的益处。
translated by 谷歌翻译